LSR/env/lib/python3.6/site-packages/pandas/tests/io/test_stata.py

1819 lines
69 KiB
Python
Raw Normal View History

2020-06-04 17:24:47 +02:00
import datetime as dt
from datetime import datetime
import gzip
import io
import os
import struct
import warnings
import numpy as np
import pytest
from pandas.core.dtypes.common import is_categorical_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.frame import DataFrame, Series
from pandas.io.parsers import read_csv
from pandas.io.stata import (
InvalidColumnName,
PossiblePrecisionLoss,
StataMissingValue,
StataReader,
StataWriterUTF8,
read_stata,
)
@pytest.fixture()
def mixed_frame():
return pd.DataFrame(
{
"a": [1, 2, 3, 4],
"b": [1.0, 3.0, 27.0, 81.0],
"c": ["Atlanta", "Birmingham", "Cincinnati", "Detroit"],
}
)
@pytest.fixture
def dirpath(datapath):
return datapath("io", "data", "stata")
@pytest.fixture
def parsed_114(dirpath):
dta14_114 = os.path.join(dirpath, "stata5_114.dta")
parsed_114 = read_stata(dta14_114, convert_dates=True)
parsed_114.index.name = "index"
return parsed_114
class TestStata:
@pytest.fixture(autouse=True)
def setup_method(self, datapath):
self.dirpath = datapath("io", "data", "stata")
self.dta1_114 = os.path.join(self.dirpath, "stata1_114.dta")
self.dta1_117 = os.path.join(self.dirpath, "stata1_117.dta")
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta")
self.dta2_117 = os.path.join(self.dirpath, "stata2_117.dta")
self.dta3_113 = os.path.join(self.dirpath, "stata3_113.dta")
self.dta3_114 = os.path.join(self.dirpath, "stata3_114.dta")
self.dta3_115 = os.path.join(self.dirpath, "stata3_115.dta")
self.dta3_117 = os.path.join(self.dirpath, "stata3_117.dta")
self.csv3 = os.path.join(self.dirpath, "stata3.csv")
self.dta4_113 = os.path.join(self.dirpath, "stata4_113.dta")
self.dta4_114 = os.path.join(self.dirpath, "stata4_114.dta")
self.dta4_115 = os.path.join(self.dirpath, "stata4_115.dta")
self.dta4_117 = os.path.join(self.dirpath, "stata4_117.dta")
self.dta_encoding = os.path.join(self.dirpath, "stata1_encoding.dta")
self.dta_encoding_118 = os.path.join(self.dirpath, "stata1_encoding_118.dta")
self.csv14 = os.path.join(self.dirpath, "stata5.csv")
self.dta14_113 = os.path.join(self.dirpath, "stata5_113.dta")
self.dta14_114 = os.path.join(self.dirpath, "stata5_114.dta")
self.dta14_115 = os.path.join(self.dirpath, "stata5_115.dta")
self.dta14_117 = os.path.join(self.dirpath, "stata5_117.dta")
self.csv15 = os.path.join(self.dirpath, "stata6.csv")
self.dta15_113 = os.path.join(self.dirpath, "stata6_113.dta")
self.dta15_114 = os.path.join(self.dirpath, "stata6_114.dta")
self.dta15_115 = os.path.join(self.dirpath, "stata6_115.dta")
self.dta15_117 = os.path.join(self.dirpath, "stata6_117.dta")
self.dta16_115 = os.path.join(self.dirpath, "stata7_115.dta")
self.dta16_117 = os.path.join(self.dirpath, "stata7_117.dta")
self.dta17_113 = os.path.join(self.dirpath, "stata8_113.dta")
self.dta17_115 = os.path.join(self.dirpath, "stata8_115.dta")
self.dta17_117 = os.path.join(self.dirpath, "stata8_117.dta")
self.dta18_115 = os.path.join(self.dirpath, "stata9_115.dta")
self.dta18_117 = os.path.join(self.dirpath, "stata9_117.dta")
self.dta19_115 = os.path.join(self.dirpath, "stata10_115.dta")
self.dta19_117 = os.path.join(self.dirpath, "stata10_117.dta")
self.dta20_115 = os.path.join(self.dirpath, "stata11_115.dta")
self.dta20_117 = os.path.join(self.dirpath, "stata11_117.dta")
self.dta21_117 = os.path.join(self.dirpath, "stata12_117.dta")
self.dta22_118 = os.path.join(self.dirpath, "stata14_118.dta")
self.dta23 = os.path.join(self.dirpath, "stata15.dta")
self.dta24_111 = os.path.join(self.dirpath, "stata7_111.dta")
self.dta25_118 = os.path.join(self.dirpath, "stata16_118.dta")
self.dta26_119 = os.path.join(self.dirpath, "stata1_119.dta.gz")
self.stata_dates = os.path.join(self.dirpath, "stata13_dates.dta")
def read_dta(self, file):
# Legacy default reader configuration
return read_stata(file, convert_dates=True)
def read_csv(self, file):
return read_csv(file, parse_dates=True)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_read_empty_dta(self, version):
empty_ds = DataFrame(columns=["unit"])
# GH 7369, make sure can read a 0-obs dta file
with tm.ensure_clean() as path:
empty_ds.to_stata(path, write_index=False, version=version)
empty_ds2 = read_stata(path)
tm.assert_frame_equal(empty_ds, empty_ds2)
@pytest.mark.parametrize("file", ["dta1_114", "dta1_117"])
def test_read_dta1(self, file):
file = getattr(self, file)
parsed = self.read_dta(file)
# Pandas uses np.nan as missing value.
# Thus, all columns will be of type float, regardless of their name.
expected = DataFrame(
[(np.nan, np.nan, np.nan, np.nan, np.nan)],
columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"],
)
# this is an oddity as really the nan should be float64, but
# the casting doesn't fail so need to match stata here
expected["float_miss"] = expected["float_miss"].astype(np.float32)
tm.assert_frame_equal(parsed, expected)
def test_read_dta2(self):
expected = DataFrame.from_records(
[
(
datetime(2006, 11, 19, 23, 13, 20),
1479596223000,
datetime(2010, 1, 20),
datetime(2010, 1, 8),
datetime(2010, 1, 1),
datetime(1974, 7, 1),
datetime(2010, 1, 1),
datetime(2010, 1, 1),
),
(
datetime(1959, 12, 31, 20, 3, 20),
-1479590,
datetime(1953, 10, 2),
datetime(1948, 6, 10),
datetime(1955, 1, 1),
datetime(1955, 7, 1),
datetime(1955, 1, 1),
datetime(2, 1, 1),
),
(pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT),
],
columns=[
"datetime_c",
"datetime_big_c",
"date",
"weekly_date",
"monthly_date",
"quarterly_date",
"half_yearly_date",
"yearly_date",
],
)
expected["yearly_date"] = expected["yearly_date"].astype("O")
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
parsed_114 = self.read_dta(self.dta2_114)
parsed_115 = self.read_dta(self.dta2_115)
parsed_117 = self.read_dta(self.dta2_117)
# 113 is buggy due to limits of date format support in Stata
# parsed_113 = self.read_dta(self.dta2_113)
# Remove resource warnings
w = [x for x in w if x.category is UserWarning]
# should get warning for each call to read_dta
assert len(w) == 3
# buggy test because of the NaT comparison on certain platforms
# Format 113 test fails since it does not support tc and tC formats
# tm.assert_frame_equal(parsed_113, expected)
tm.assert_frame_equal(parsed_114, expected, check_datetimelike_compat=True)
tm.assert_frame_equal(parsed_115, expected, check_datetimelike_compat=True)
tm.assert_frame_equal(parsed_117, expected, check_datetimelike_compat=True)
@pytest.mark.parametrize("file", ["dta3_113", "dta3_114", "dta3_115", "dta3_117"])
def test_read_dta3(self, file):
file = getattr(self, file)
parsed = self.read_dta(file)
# match stata here
expected = self.read_csv(self.csv3)
expected = expected.astype(np.float32)
expected["year"] = expected["year"].astype(np.int16)
expected["quarter"] = expected["quarter"].astype(np.int8)
tm.assert_frame_equal(parsed, expected)
@pytest.mark.parametrize("file", ["dta4_113", "dta4_114", "dta4_115", "dta4_117"])
def test_read_dta4(self, file):
file = getattr(self, file)
parsed = self.read_dta(file)
expected = DataFrame.from_records(
[
["one", "ten", "one", "one", "one"],
["two", "nine", "two", "two", "two"],
["three", "eight", "three", "three", "three"],
["four", "seven", 4, "four", "four"],
["five", "six", 5, np.nan, "five"],
["six", "five", 6, np.nan, "six"],
["seven", "four", 7, np.nan, "seven"],
["eight", "three", 8, np.nan, "eight"],
["nine", "two", 9, np.nan, "nine"],
["ten", "one", "ten", np.nan, "ten"],
],
columns=[
"fully_labeled",
"fully_labeled2",
"incompletely_labeled",
"labeled_with_missings",
"float_labelled",
],
)
# these are all categoricals
expected = pd.concat(
[expected[col].astype("category") for col in expected], axis=1
)
# stata doesn't save .category metadata
tm.assert_frame_equal(parsed, expected, check_categorical=False)
# File containing strls
def test_read_dta12(self):
parsed_117 = self.read_dta(self.dta21_117)
expected = DataFrame.from_records(
[
[1, "abc", "abcdefghi"],
[3, "cba", "qwertywertyqwerty"],
[93, "", "strl"],
],
columns=["x", "y", "z"],
)
tm.assert_frame_equal(parsed_117, expected, check_dtype=False)
def test_read_dta18(self):
parsed_118 = self.read_dta(self.dta22_118)
parsed_118["Bytes"] = parsed_118["Bytes"].astype("O")
expected = DataFrame.from_records(
[
["Cat", "Bogota", "Bogotá", 1, 1.0, "option b Ünicode", 1.0],
["Dog", "Boston", "Uzunköprü", np.nan, np.nan, np.nan, np.nan],
["Plane", "Rome", "Tromsø", 0, 0.0, "option a", 0.0],
["Potato", "Tokyo", "Elâzığ", -4, 4.0, 4, 4],
["", "", "", 0, 0.3332999, "option a", 1 / 3.0],
],
columns=[
"Things",
"Cities",
"Unicode_Cities_Strl",
"Ints",
"Floats",
"Bytes",
"Longs",
],
)
expected["Floats"] = expected["Floats"].astype(np.float32)
for col in parsed_118.columns:
tm.assert_almost_equal(parsed_118[col], expected[col])
with StataReader(self.dta22_118) as rdr:
vl = rdr.variable_labels()
vl_expected = {
"Unicode_Cities_Strl": "Here are some strls with Ünicode chars",
"Longs": "long data",
"Things": "Here are some things",
"Bytes": "byte data",
"Ints": "int data",
"Cities": "Here are some cities",
"Floats": "float data",
}
tm.assert_dict_equal(vl, vl_expected)
assert rdr.data_label == "This is a Ünicode data label"
def test_read_write_dta5(self):
original = DataFrame(
[(np.nan, np.nan, np.nan, np.nan, np.nan)],
columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"],
)
original.index.name = "index"
with tm.ensure_clean() as path:
original.to_stata(path, None)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), original)
def test_write_dta6(self):
original = self.read_csv(self.csv3)
original.index.name = "index"
original.index = original.index.astype(np.int32)
original["year"] = original["year"].astype(np.int32)
original["quarter"] = original["quarter"].astype(np.int32)
with tm.ensure_clean() as path:
original.to_stata(path, None)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(
written_and_read_again.set_index("index"),
original,
check_index_type=False,
)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_read_write_dta10(self, version):
original = DataFrame(
data=[["string", "object", 1, 1.1, np.datetime64("2003-12-25")]],
columns=["string", "object", "integer", "floating", "datetime"],
)
original["object"] = Series(original["object"], dtype=object)
original.index.name = "index"
original.index = original.index.astype(np.int32)
original["integer"] = original["integer"].astype(np.int32)
with tm.ensure_clean() as path:
original.to_stata(path, {"datetime": "tc"}, version=version)
written_and_read_again = self.read_dta(path)
# original.index is np.int32, read index is np.int64
tm.assert_frame_equal(
written_and_read_again.set_index("index"),
original,
check_index_type=False,
)
def test_stata_doc_examples(self):
with tm.ensure_clean() as path:
df = DataFrame(np.random.randn(10, 2), columns=list("AB"))
df.to_stata(path)
def test_write_preserves_original(self):
# 9795
np.random.seed(423)
df = pd.DataFrame(np.random.randn(5, 4), columns=list("abcd"))
df.loc[2, "a":"c"] = np.nan
df_copy = df.copy()
with tm.ensure_clean() as path:
df.to_stata(path, write_index=False)
tm.assert_frame_equal(df, df_copy)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_encoding(self, version):
# GH 4626, proper encoding handling
raw = read_stata(self.dta_encoding)
encoded = read_stata(self.dta_encoding)
result = encoded.kreis1849[0]
expected = raw.kreis1849[0]
assert result == expected
assert isinstance(result, str)
with tm.ensure_clean() as path:
encoded.to_stata(path, write_index=False, version=version)
reread_encoded = read_stata(path)
tm.assert_frame_equal(encoded, reread_encoded)
def test_read_write_dta11(self):
original = DataFrame(
[(1, 2, 3, 4)],
columns=[
"good",
"b\u00E4d",
"8number",
"astringwithmorethan32characters______",
],
)
formatted = DataFrame(
[(1, 2, 3, 4)],
columns=["good", "b_d", "_8number", "astringwithmorethan32characters_"],
)
formatted.index.name = "index"
formatted = formatted.astype(np.int32)
with tm.ensure_clean() as path:
with tm.assert_produces_warning(pd.io.stata.InvalidColumnName):
original.to_stata(path, None)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), formatted)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_read_write_dta12(self, version):
original = DataFrame(
[(1, 2, 3, 4, 5, 6)],
columns=[
"astringwithmorethan32characters_1",
"astringwithmorethan32characters_2",
"+",
"-",
"short",
"delete",
],
)
formatted = DataFrame(
[(1, 2, 3, 4, 5, 6)],
columns=[
"astringwithmorethan32characters_",
"_0astringwithmorethan32character",
"_",
"_1_",
"_short",
"_delete",
],
)
formatted.index.name = "index"
formatted = formatted.astype(np.int32)
with tm.ensure_clean() as path:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always", InvalidColumnName)
original.to_stata(path, None, version=version)
# should get a warning for that format.
assert len(w) == 1
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), formatted)
def test_read_write_dta13(self):
s1 = Series(2 ** 9, dtype=np.int16)
s2 = Series(2 ** 17, dtype=np.int32)
s3 = Series(2 ** 33, dtype=np.int64)
original = DataFrame({"int16": s1, "int32": s2, "int64": s3})
original.index.name = "index"
formatted = original
formatted["int64"] = formatted["int64"].astype(np.float64)
with tm.ensure_clean() as path:
original.to_stata(path)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), formatted)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
@pytest.mark.parametrize(
"file", ["dta14_113", "dta14_114", "dta14_115", "dta14_117"]
)
def test_read_write_reread_dta14(self, file, parsed_114, version):
file = getattr(self, file)
parsed = self.read_dta(file)
parsed.index.name = "index"
expected = self.read_csv(self.csv14)
cols = ["byte_", "int_", "long_", "float_", "double_"]
for col in cols:
expected[col] = expected[col]._convert(datetime=True, numeric=True)
expected["float_"] = expected["float_"].astype(np.float32)
expected["date_td"] = pd.to_datetime(expected["date_td"], errors="coerce")
tm.assert_frame_equal(parsed_114, parsed)
with tm.ensure_clean() as path:
parsed_114.to_stata(path, {"date_td": "td"}, version=version)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), parsed_114)
@pytest.mark.parametrize(
"file", ["dta15_113", "dta15_114", "dta15_115", "dta15_117"]
)
def test_read_write_reread_dta15(self, file):
expected = self.read_csv(self.csv15)
expected["byte_"] = expected["byte_"].astype(np.int8)
expected["int_"] = expected["int_"].astype(np.int16)
expected["long_"] = expected["long_"].astype(np.int32)
expected["float_"] = expected["float_"].astype(np.float32)
expected["double_"] = expected["double_"].astype(np.float64)
expected["date_td"] = expected["date_td"].apply(
datetime.strptime, args=("%Y-%m-%d",)
)
file = getattr(self, file)
parsed = self.read_dta(file)
tm.assert_frame_equal(expected, parsed)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_timestamp_and_label(self, version):
original = DataFrame([(1,)], columns=["variable"])
time_stamp = datetime(2000, 2, 29, 14, 21)
data_label = "This is a data file."
with tm.ensure_clean() as path:
original.to_stata(
path, time_stamp=time_stamp, data_label=data_label, version=version
)
with StataReader(path) as reader:
assert reader.time_stamp == "29 Feb 2000 14:21"
assert reader.data_label == data_label
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_invalid_timestamp(self, version):
original = DataFrame([(1,)], columns=["variable"])
time_stamp = "01 Jan 2000, 00:00:00"
with tm.ensure_clean() as path:
msg = "time_stamp should be datetime type"
with pytest.raises(ValueError, match=msg):
original.to_stata(path, time_stamp=time_stamp, version=version)
def test_numeric_column_names(self):
original = DataFrame(np.reshape(np.arange(25.0), (5, 5)))
original.index.name = "index"
with tm.ensure_clean() as path:
# should get a warning for that format.
with tm.assert_produces_warning(InvalidColumnName):
original.to_stata(path)
written_and_read_again = self.read_dta(path)
written_and_read_again = written_and_read_again.set_index("index")
columns = list(written_and_read_again.columns)
convert_col_name = lambda x: int(x[1])
written_and_read_again.columns = map(convert_col_name, columns)
tm.assert_frame_equal(original, written_and_read_again)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_nan_to_missing_value(self, version):
s1 = Series(np.arange(4.0), dtype=np.float32)
s2 = Series(np.arange(4.0), dtype=np.float64)
s1[::2] = np.nan
s2[1::2] = np.nan
original = DataFrame({"s1": s1, "s2": s2})
original.index.name = "index"
with tm.ensure_clean() as path:
original.to_stata(path, version=version)
written_and_read_again = self.read_dta(path)
written_and_read_again = written_and_read_again.set_index("index")
tm.assert_frame_equal(written_and_read_again, original)
def test_no_index(self):
columns = ["x", "y"]
original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns)
original.index.name = "index_not_written"
with tm.ensure_clean() as path:
original.to_stata(path, write_index=False)
written_and_read_again = self.read_dta(path)
with pytest.raises(KeyError, match=original.index.name):
written_and_read_again["index_not_written"]
def test_string_no_dates(self):
s1 = Series(["a", "A longer string"])
s2 = Series([1.0, 2.0], dtype=np.float64)
original = DataFrame({"s1": s1, "s2": s2})
original.index.name = "index"
with tm.ensure_clean() as path:
original.to_stata(path)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), original)
def test_large_value_conversion(self):
s0 = Series([1, 99], dtype=np.int8)
s1 = Series([1, 127], dtype=np.int8)
s2 = Series([1, 2 ** 15 - 1], dtype=np.int16)
s3 = Series([1, 2 ** 63 - 1], dtype=np.int64)
original = DataFrame({"s0": s0, "s1": s1, "s2": s2, "s3": s3})
original.index.name = "index"
with tm.ensure_clean() as path:
with tm.assert_produces_warning(PossiblePrecisionLoss):
original.to_stata(path)
written_and_read_again = self.read_dta(path)
modified = original.copy()
modified["s1"] = Series(modified["s1"], dtype=np.int16)
modified["s2"] = Series(modified["s2"], dtype=np.int32)
modified["s3"] = Series(modified["s3"], dtype=np.float64)
tm.assert_frame_equal(written_and_read_again.set_index("index"), modified)
def test_dates_invalid_column(self):
original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)])
original.index.name = "index"
with tm.ensure_clean() as path:
with tm.assert_produces_warning(InvalidColumnName):
original.to_stata(path, {0: "tc"})
written_and_read_again = self.read_dta(path)
modified = original.copy()
modified.columns = ["_0"]
tm.assert_frame_equal(written_and_read_again.set_index("index"), modified)
def test_105(self):
# Data obtained from:
# http://go.worldbank.org/ZXY29PVJ21
dpath = os.path.join(self.dirpath, "S4_EDUC1.dta")
df = pd.read_stata(dpath)
df0 = [[1, 1, 3, -2], [2, 1, 2, -2], [4, 1, 1, -2]]
df0 = pd.DataFrame(df0)
df0.columns = ["clustnum", "pri_schl", "psch_num", "psch_dis"]
df0["clustnum"] = df0["clustnum"].astype(np.int16)
df0["pri_schl"] = df0["pri_schl"].astype(np.int8)
df0["psch_num"] = df0["psch_num"].astype(np.int8)
df0["psch_dis"] = df0["psch_dis"].astype(np.float32)
tm.assert_frame_equal(df.head(3), df0)
def test_value_labels_old_format(self):
# GH 19417
#
# Test that value_labels() returns an empty dict if the file format
# predates supporting value labels.
dpath = os.path.join(self.dirpath, "S4_EDUC1.dta")
reader = StataReader(dpath)
assert reader.value_labels() == {}
reader.close()
def test_date_export_formats(self):
columns = ["tc", "td", "tw", "tm", "tq", "th", "ty"]
conversions = {c: c for c in columns}
data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns)
original = DataFrame([data], columns=columns)
original.index.name = "index"
expected_values = [
datetime(2006, 11, 20, 23, 13, 20), # Time
datetime(2006, 11, 20), # Day
datetime(2006, 11, 19), # Week
datetime(2006, 11, 1), # Month
datetime(2006, 10, 1), # Quarter year
datetime(2006, 7, 1), # Half year
datetime(2006, 1, 1),
] # Year
expected = DataFrame([expected_values], columns=columns)
expected.index.name = "index"
with tm.ensure_clean() as path:
original.to_stata(path, conversions)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
def test_write_missing_strings(self):
original = DataFrame([["1"], [None]], columns=["foo"])
expected = DataFrame([["1"], [""]], columns=["foo"])
expected.index.name = "index"
with tm.ensure_clean() as path:
original.to_stata(path)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
@pytest.mark.parametrize("byteorder", [">", "<"])
def test_bool_uint(self, byteorder, version):
s0 = Series([0, 1, True], dtype=np.bool)
s1 = Series([0, 1, 100], dtype=np.uint8)
s2 = Series([0, 1, 255], dtype=np.uint8)
s3 = Series([0, 1, 2 ** 15 - 100], dtype=np.uint16)
s4 = Series([0, 1, 2 ** 16 - 1], dtype=np.uint16)
s5 = Series([0, 1, 2 ** 31 - 100], dtype=np.uint32)
s6 = Series([0, 1, 2 ** 32 - 1], dtype=np.uint32)
original = DataFrame(
{"s0": s0, "s1": s1, "s2": s2, "s3": s3, "s4": s4, "s5": s5, "s6": s6}
)
original.index.name = "index"
expected = original.copy()
expected_types = (
np.int8,
np.int8,
np.int16,
np.int16,
np.int32,
np.int32,
np.float64,
)
for c, t in zip(expected.columns, expected_types):
expected[c] = expected[c].astype(t)
with tm.ensure_clean() as path:
original.to_stata(path, byteorder=byteorder, version=version)
written_and_read_again = self.read_dta(path)
written_and_read_again = written_and_read_again.set_index("index")
tm.assert_frame_equal(written_and_read_again, expected)
def test_variable_labels(self):
with StataReader(self.dta16_115) as rdr:
sr_115 = rdr.variable_labels()
with StataReader(self.dta16_117) as rdr:
sr_117 = rdr.variable_labels()
keys = ("var1", "var2", "var3")
labels = ("label1", "label2", "label3")
for k, v in sr_115.items():
assert k in sr_117
assert v == sr_117[k]
assert k in keys
assert v in labels
def test_minimal_size_col(self):
str_lens = (1, 100, 244)
s = {}
for str_len in str_lens:
s["s" + str(str_len)] = Series(
["a" * str_len, "b" * str_len, "c" * str_len]
)
original = DataFrame(s)
with tm.ensure_clean() as path:
original.to_stata(path, write_index=False)
with StataReader(path) as sr:
typlist = sr.typlist
variables = sr.varlist
formats = sr.fmtlist
for variable, fmt, typ in zip(variables, formats, typlist):
assert int(variable[1:]) == int(fmt[1:-1])
assert int(variable[1:]) == typ
def test_excessively_long_string(self):
str_lens = (1, 244, 500)
s = {}
for str_len in str_lens:
s["s" + str(str_len)] = Series(
["a" * str_len, "b" * str_len, "c" * str_len]
)
original = DataFrame(s)
msg = (
r"Fixed width strings in Stata \.dta files are limited to 244"
r" \(or fewer\)\ncharacters\. Column 's500' does not satisfy"
r" this restriction\. Use the\n'version=117' parameter to write"
r" the newer \(Stata 13 and later\) format\."
)
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
original.to_stata(path)
def test_missing_value_generator(self):
types = ("b", "h", "l")
df = DataFrame([[0.0]], columns=["float_"])
with tm.ensure_clean() as path:
df.to_stata(path)
with StataReader(path) as rdr:
valid_range = rdr.VALID_RANGE
expected_values = ["." + chr(97 + i) for i in range(26)]
expected_values.insert(0, ".")
for t in types:
offset = valid_range[t][1]
for i in range(0, 27):
val = StataMissingValue(offset + 1 + i)
assert val.string == expected_values[i]
# Test extremes for floats
val = StataMissingValue(struct.unpack("<f", b"\x00\x00\x00\x7f")[0])
assert val.string == "."
val = StataMissingValue(struct.unpack("<f", b"\x00\xd0\x00\x7f")[0])
assert val.string == ".z"
# Test extremes for floats
val = StataMissingValue(
struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0]
)
assert val.string == "."
val = StataMissingValue(
struct.unpack("<d", b"\x00\x00\x00\x00\x00\x1a\xe0\x7f")[0]
)
assert val.string == ".z"
@pytest.mark.parametrize("file", ["dta17_113", "dta17_115", "dta17_117"])
def test_missing_value_conversion(self, file):
columns = ["int8_", "int16_", "int32_", "float32_", "float64_"]
smv = StataMissingValue(101)
keys = sorted(smv.MISSING_VALUES.keys())
data = []
for i in range(27):
row = [StataMissingValue(keys[i + (j * 27)]) for j in range(5)]
data.append(row)
expected = DataFrame(data, columns=columns)
parsed = read_stata(getattr(self, file), convert_missing=True)
tm.assert_frame_equal(parsed, expected)
def test_big_dates(self):
yr = [1960, 2000, 9999, 100, 2262, 1677]
mo = [1, 1, 12, 1, 4, 9]
dd = [1, 1, 31, 1, 22, 23]
hr = [0, 0, 23, 0, 0, 0]
mm = [0, 0, 59, 0, 0, 0]
ss = [0, 0, 59, 0, 0, 0]
expected = []
for i in range(len(yr)):
row = []
for j in range(7):
if j == 0:
row.append(datetime(yr[i], mo[i], dd[i], hr[i], mm[i], ss[i]))
elif j == 6:
row.append(datetime(yr[i], 1, 1))
else:
row.append(datetime(yr[i], mo[i], dd[i]))
expected.append(row)
expected.append([pd.NaT] * 7)
columns = [
"date_tc",
"date_td",
"date_tw",
"date_tm",
"date_tq",
"date_th",
"date_ty",
]
# Fixes for weekly, quarterly,half,year
expected[2][2] = datetime(9999, 12, 24)
expected[2][3] = datetime(9999, 12, 1)
expected[2][4] = datetime(9999, 10, 1)
expected[2][5] = datetime(9999, 7, 1)
expected[4][2] = datetime(2262, 4, 16)
expected[4][3] = expected[4][4] = datetime(2262, 4, 1)
expected[4][5] = expected[4][6] = datetime(2262, 1, 1)
expected[5][2] = expected[5][3] = expected[5][4] = datetime(1677, 10, 1)
expected[5][5] = expected[5][6] = datetime(1678, 1, 1)
expected = DataFrame(expected, columns=columns, dtype=np.object)
parsed_115 = read_stata(self.dta18_115)
parsed_117 = read_stata(self.dta18_117)
tm.assert_frame_equal(expected, parsed_115, check_datetimelike_compat=True)
tm.assert_frame_equal(expected, parsed_117, check_datetimelike_compat=True)
date_conversion = {c: c[-2:] for c in columns}
# {c : c[-2:] for c in columns}
with tm.ensure_clean() as path:
expected.index.name = "index"
expected.to_stata(path, date_conversion)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(
written_and_read_again.set_index("index"),
expected,
check_datetimelike_compat=True,
)
def test_dtype_conversion(self):
expected = self.read_csv(self.csv15)
expected["byte_"] = expected["byte_"].astype(np.int8)
expected["int_"] = expected["int_"].astype(np.int16)
expected["long_"] = expected["long_"].astype(np.int32)
expected["float_"] = expected["float_"].astype(np.float32)
expected["double_"] = expected["double_"].astype(np.float64)
expected["date_td"] = expected["date_td"].apply(
datetime.strptime, args=("%Y-%m-%d",)
)
no_conversion = read_stata(self.dta15_117, convert_dates=True)
tm.assert_frame_equal(expected, no_conversion)
conversion = read_stata(
self.dta15_117, convert_dates=True, preserve_dtypes=False
)
# read_csv types are the same
expected = self.read_csv(self.csv15)
expected["date_td"] = expected["date_td"].apply(
datetime.strptime, args=("%Y-%m-%d",)
)
tm.assert_frame_equal(expected, conversion)
def test_drop_column(self):
expected = self.read_csv(self.csv15)
expected["byte_"] = expected["byte_"].astype(np.int8)
expected["int_"] = expected["int_"].astype(np.int16)
expected["long_"] = expected["long_"].astype(np.int32)
expected["float_"] = expected["float_"].astype(np.float32)
expected["double_"] = expected["double_"].astype(np.float64)
expected["date_td"] = expected["date_td"].apply(
datetime.strptime, args=("%Y-%m-%d",)
)
columns = ["byte_", "int_", "long_"]
expected = expected[columns]
dropped = read_stata(self.dta15_117, convert_dates=True, columns=columns)
tm.assert_frame_equal(expected, dropped)
# See PR 10757
columns = ["int_", "long_", "byte_"]
expected = expected[columns]
reordered = read_stata(self.dta15_117, convert_dates=True, columns=columns)
tm.assert_frame_equal(expected, reordered)
msg = "columns contains duplicate entries"
with pytest.raises(ValueError, match=msg):
columns = ["byte_", "byte_"]
read_stata(self.dta15_117, convert_dates=True, columns=columns)
msg = "The following columns were not found in the Stata data set: not_found"
with pytest.raises(ValueError, match=msg):
columns = ["byte_", "int_", "long_", "not_found"]
read_stata(self.dta15_117, convert_dates=True, columns=columns)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
@pytest.mark.filterwarnings(
"ignore:\\nStata value:pandas.io.stata.ValueLabelTypeMismatch"
)
def test_categorical_writing(self, version):
original = DataFrame.from_records(
[
["one", "ten", "one", "one", "one", 1],
["two", "nine", "two", "two", "two", 2],
["three", "eight", "three", "three", "three", 3],
["four", "seven", 4, "four", "four", 4],
["five", "six", 5, np.nan, "five", 5],
["six", "five", 6, np.nan, "six", 6],
["seven", "four", 7, np.nan, "seven", 7],
["eight", "three", 8, np.nan, "eight", 8],
["nine", "two", 9, np.nan, "nine", 9],
["ten", "one", "ten", np.nan, "ten", 10],
],
columns=[
"fully_labeled",
"fully_labeled2",
"incompletely_labeled",
"labeled_with_missings",
"float_labelled",
"unlabeled",
],
)
expected = original.copy()
# these are all categoricals
original = pd.concat(
[original[col].astype("category") for col in original], axis=1
)
expected["incompletely_labeled"] = expected["incompletely_labeled"].apply(str)
expected["unlabeled"] = expected["unlabeled"].apply(str)
expected = pd.concat(
[expected[col].astype("category") for col in expected], axis=1
)
expected.index.name = "index"
with tm.ensure_clean() as path:
original.to_stata(path, version=version)
written_and_read_again = self.read_dta(path)
res = written_and_read_again.set_index("index")
tm.assert_frame_equal(res, expected, check_categorical=False)
def test_categorical_warnings_and_errors(self):
# Warning for non-string labels
# Error for labels too long
original = pd.DataFrame.from_records(
[["a" * 10000], ["b" * 10000], ["c" * 10000], ["d" * 10000]],
columns=["Too_long"],
)
original = pd.concat(
[original[col].astype("category") for col in original], axis=1
)
with tm.ensure_clean() as path:
msg = (
"Stata value labels for a single variable must have"
r" a combined length less than 32,000 characters\."
)
with pytest.raises(ValueError, match=msg):
original.to_stata(path)
original = pd.DataFrame.from_records(
[["a"], ["b"], ["c"], ["d"], [1]], columns=["Too_long"]
)
original = pd.concat(
[original[col].astype("category") for col in original], axis=1
)
with tm.assert_produces_warning(pd.io.stata.ValueLabelTypeMismatch):
original.to_stata(path)
# should get a warning for mixed content
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_categorical_with_stata_missing_values(self, version):
values = [["a" + str(i)] for i in range(120)]
values.append([np.nan])
original = pd.DataFrame.from_records(values, columns=["many_labels"])
original = pd.concat(
[original[col].astype("category") for col in original], axis=1
)
original.index.name = "index"
with tm.ensure_clean() as path:
original.to_stata(path, version=version)
written_and_read_again = self.read_dta(path)
res = written_and_read_again.set_index("index")
tm.assert_frame_equal(res, original, check_categorical=False)
@pytest.mark.parametrize("file", ["dta19_115", "dta19_117"])
def test_categorical_order(self, file):
# Directly construct using expected codes
# Format is is_cat, col_name, labels (in order), underlying data
expected = [
(True, "ordered", ["a", "b", "c", "d", "e"], np.arange(5)),
(True, "reverse", ["a", "b", "c", "d", "e"], np.arange(5)[::-1]),
(True, "noorder", ["a", "b", "c", "d", "e"], np.array([2, 1, 4, 0, 3])),
(True, "floating", ["a", "b", "c", "d", "e"], np.arange(0, 5)),
(True, "float_missing", ["a", "d", "e"], np.array([0, 1, 2, -1, -1])),
(False, "nolabel", [1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)),
(True, "int32_mixed", ["d", 2, "e", "b", "a"], np.arange(5)),
]
cols = []
for is_cat, col, labels, codes in expected:
if is_cat:
cols.append((col, pd.Categorical.from_codes(codes, labels)))
else:
cols.append((col, pd.Series(labels, dtype=np.float32)))
expected = DataFrame.from_dict(dict(cols))
# Read with and with out categoricals, ensure order is identical
file = getattr(self, file)
parsed = read_stata(file)
tm.assert_frame_equal(expected, parsed, check_categorical=False)
# Check identity of codes
for col in expected:
if is_categorical_dtype(expected[col]):
tm.assert_series_equal(expected[col].cat.codes, parsed[col].cat.codes)
tm.assert_index_equal(
expected[col].cat.categories, parsed[col].cat.categories
)
@pytest.mark.parametrize("file", ["dta20_115", "dta20_117"])
def test_categorical_sorting(self, file):
parsed = read_stata(getattr(self, file))
# Sort based on codes, not strings
parsed = parsed.sort_values("srh", na_position="first")
# Don't sort index
parsed.index = np.arange(parsed.shape[0])
codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4]
categories = ["Poor", "Fair", "Good", "Very good", "Excellent"]
cat = pd.Categorical.from_codes(codes=codes, categories=categories)
expected = pd.Series(cat, name="srh")
tm.assert_series_equal(expected, parsed["srh"], check_categorical=False)
@pytest.mark.parametrize("file", ["dta19_115", "dta19_117"])
def test_categorical_ordering(self, file):
file = getattr(self, file)
parsed = read_stata(file)
parsed_unordered = read_stata(file, order_categoricals=False)
for col in parsed:
if not is_categorical_dtype(parsed[col]):
continue
assert parsed[col].cat.ordered
assert not parsed_unordered[col].cat.ordered
@pytest.mark.parametrize(
"file",
[
"dta1_117",
"dta2_117",
"dta3_117",
"dta4_117",
"dta14_117",
"dta15_117",
"dta16_117",
"dta17_117",
"dta18_117",
"dta19_117",
"dta20_117",
],
)
@pytest.mark.parametrize("chunksize", [1, 2])
@pytest.mark.parametrize("convert_categoricals", [False, True])
@pytest.mark.parametrize("convert_dates", [False, True])
def test_read_chunks_117(
self, file, chunksize, convert_categoricals, convert_dates
):
fname = getattr(self, file)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
parsed = read_stata(
fname,
convert_categoricals=convert_categoricals,
convert_dates=convert_dates,
)
itr = read_stata(
fname,
iterator=True,
convert_categoricals=convert_categoricals,
convert_dates=convert_dates,
)
pos = 0
for j in range(5):
with warnings.catch_warnings(record=True) as w: # noqa
warnings.simplefilter("always")
try:
chunk = itr.read(chunksize)
except StopIteration:
break
from_frame = parsed.iloc[pos : pos + chunksize, :]
tm.assert_frame_equal(
from_frame,
chunk,
check_dtype=False,
check_datetimelike_compat=True,
check_categorical=False,
)
pos += chunksize
itr.close()
def test_iterator(self):
fname = self.dta3_117
parsed = read_stata(fname)
with read_stata(fname, iterator=True) as itr:
chunk = itr.read(5)
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk)
with read_stata(fname, chunksize=5) as itr:
chunk = list(itr)
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0])
with read_stata(fname, iterator=True) as itr:
chunk = itr.get_chunk(5)
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk)
with read_stata(fname, chunksize=5) as itr:
chunk = itr.get_chunk()
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk)
# GH12153
with read_stata(fname, chunksize=4) as itr:
from_chunks = pd.concat(itr)
tm.assert_frame_equal(parsed, from_chunks)
@pytest.mark.parametrize(
"file",
[
"dta2_115",
"dta3_115",
"dta4_115",
"dta14_115",
"dta15_115",
"dta16_115",
"dta17_115",
"dta18_115",
"dta19_115",
"dta20_115",
],
)
@pytest.mark.parametrize("chunksize", [1, 2])
@pytest.mark.parametrize("convert_categoricals", [False, True])
@pytest.mark.parametrize("convert_dates", [False, True])
def test_read_chunks_115(
self, file, chunksize, convert_categoricals, convert_dates
):
fname = getattr(self, file)
# Read the whole file
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
parsed = read_stata(
fname,
convert_categoricals=convert_categoricals,
convert_dates=convert_dates,
)
# Compare to what we get when reading by chunk
itr = read_stata(
fname,
iterator=True,
convert_dates=convert_dates,
convert_categoricals=convert_categoricals,
)
pos = 0
for j in range(5):
with warnings.catch_warnings(record=True) as w: # noqa
warnings.simplefilter("always")
try:
chunk = itr.read(chunksize)
except StopIteration:
break
from_frame = parsed.iloc[pos : pos + chunksize, :]
tm.assert_frame_equal(
from_frame,
chunk,
check_dtype=False,
check_datetimelike_compat=True,
check_categorical=False,
)
pos += chunksize
itr.close()
def test_read_chunks_columns(self):
fname = self.dta3_117
columns = ["quarter", "cpi", "m1"]
chunksize = 2
parsed = read_stata(fname, columns=columns)
with read_stata(fname, iterator=True) as itr:
pos = 0
for j in range(5):
chunk = itr.read(chunksize, columns=columns)
if chunk is None:
break
from_frame = parsed.iloc[pos : pos + chunksize, :]
tm.assert_frame_equal(from_frame, chunk, check_dtype=False)
pos += chunksize
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_write_variable_labels(self, version, mixed_frame):
# GH 13631, add support for writing variable labels
mixed_frame.index.name = "index"
variable_labels = {"a": "City Rank", "b": "City Exponent", "c": "City"}
with tm.ensure_clean() as path:
mixed_frame.to_stata(path, variable_labels=variable_labels, version=version)
with StataReader(path) as sr:
read_labels = sr.variable_labels()
expected_labels = {
"index": "",
"a": "City Rank",
"b": "City Exponent",
"c": "City",
}
assert read_labels == expected_labels
variable_labels["index"] = "The Index"
with tm.ensure_clean() as path:
mixed_frame.to_stata(path, variable_labels=variable_labels, version=version)
with StataReader(path) as sr:
read_labels = sr.variable_labels()
assert read_labels == variable_labels
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_invalid_variable_labels(self, version, mixed_frame):
mixed_frame.index.name = "index"
variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"}
with tm.ensure_clean() as path:
msg = "Variable labels must be 80 characters or fewer"
with pytest.raises(ValueError, match=msg):
mixed_frame.to_stata(
path, variable_labels=variable_labels, version=version
)
@pytest.mark.parametrize("version", [114, 117])
def test_invalid_variable_label_encoding(self, version, mixed_frame):
mixed_frame.index.name = "index"
variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"}
variable_labels["a"] = "invalid character Œ"
with tm.ensure_clean() as path:
with pytest.raises(
ValueError, match="Variable labels must contain only characters"
):
mixed_frame.to_stata(
path, variable_labels=variable_labels, version=version
)
def test_write_variable_label_errors(self, mixed_frame):
values = ["\u03A1", "\u0391", "\u039D", "\u0394", "\u0391", "\u03A3"]
variable_labels_utf8 = {
"a": "City Rank",
"b": "City Exponent",
"c": "".join(values),
}
msg = (
"Variable labels must contain only characters that can be "
"encoded in Latin-1"
)
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
mixed_frame.to_stata(path, variable_labels=variable_labels_utf8)
variable_labels_long = {
"a": "City Rank",
"b": "City Exponent",
"c": "A very, very, very long variable label "
"that is too long for Stata which means "
"that it has more than 80 characters",
}
msg = "Variable labels must be 80 characters or fewer"
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
mixed_frame.to_stata(path, variable_labels=variable_labels_long)
def test_default_date_conversion(self):
# GH 12259
dates = [
dt.datetime(1999, 12, 31, 12, 12, 12, 12000),
dt.datetime(2012, 12, 21, 12, 21, 12, 21000),
dt.datetime(1776, 7, 4, 7, 4, 7, 4000),
]
original = pd.DataFrame(
{
"nums": [1.0, 2.0, 3.0],
"strs": ["apple", "banana", "cherry"],
"dates": dates,
}
)
with tm.ensure_clean() as path:
original.to_stata(path, write_index=False)
reread = read_stata(path, convert_dates=True)
tm.assert_frame_equal(original, reread)
original.to_stata(path, write_index=False, convert_dates={"dates": "tc"})
direct = read_stata(path, convert_dates=True)
tm.assert_frame_equal(reread, direct)
dates_idx = original.columns.tolist().index("dates")
original.to_stata(path, write_index=False, convert_dates={dates_idx: "tc"})
direct = read_stata(path, convert_dates=True)
tm.assert_frame_equal(reread, direct)
def test_unsupported_type(self):
original = pd.DataFrame({"a": [1 + 2j, 2 + 4j]})
msg = "Data type complex128 not supported"
with pytest.raises(NotImplementedError, match=msg):
with tm.ensure_clean() as path:
original.to_stata(path)
def test_unsupported_datetype(self):
dates = [
dt.datetime(1999, 12, 31, 12, 12, 12, 12000),
dt.datetime(2012, 12, 21, 12, 21, 12, 21000),
dt.datetime(1776, 7, 4, 7, 4, 7, 4000),
]
original = pd.DataFrame(
{
"nums": [1.0, 2.0, 3.0],
"strs": ["apple", "banana", "cherry"],
"dates": dates,
}
)
msg = "Format %tC not implemented"
with pytest.raises(NotImplementedError, match=msg):
with tm.ensure_clean() as path:
original.to_stata(path, convert_dates={"dates": "tC"})
dates = pd.date_range("1-1-1990", periods=3, tz="Asia/Hong_Kong")
original = pd.DataFrame(
{
"nums": [1.0, 2.0, 3.0],
"strs": ["apple", "banana", "cherry"],
"dates": dates,
}
)
with pytest.raises(NotImplementedError):
with tm.ensure_clean() as path:
original.to_stata(path)
def test_repeated_column_labels(self):
# GH 13923, 25772
msg = """
Value labels for column ethnicsn are not unique. These cannot be converted to
pandas categoricals.
Either read the file with `convert_categoricals` set to False or use the
low level interface in `StataReader` to separately read the values and the
value_labels.
The repeated labels are:\n-+\nwolof
"""
with pytest.raises(ValueError, match=msg):
read_stata(self.dta23, convert_categoricals=True)
def test_stata_111(self):
# 111 is an old version but still used by current versions of
# SAS when exporting to Stata format. We do not know of any
# on-line documentation for this version.
df = read_stata(self.dta24_111)
original = pd.DataFrame(
{
"y": [1, 1, 1, 1, 1, 0, 0, np.NaN, 0, 0],
"x": [1, 2, 1, 3, np.NaN, 4, 3, 5, 1, 6],
"w": [2, np.NaN, 5, 2, 4, 4, 3, 1, 2, 3],
"z": ["a", "b", "c", "d", "e", "", "g", "h", "i", "j"],
}
)
original = original[["y", "x", "w", "z"]]
tm.assert_frame_equal(original, df)
def test_out_of_range_double(self):
# GH 14618
df = DataFrame(
{
"ColumnOk": [0.0, np.finfo(np.double).eps, 4.49423283715579e307],
"ColumnTooBig": [0.0, np.finfo(np.double).eps, np.finfo(np.double).max],
}
)
msg = (
r"Column ColumnTooBig has a maximum value \(.+\) outside the range "
r"supported by Stata \(.+\)"
)
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
df.to_stata(path)
df.loc[2, "ColumnTooBig"] = np.inf
msg = (
"Column ColumnTooBig has a maximum value of infinity which is outside "
"the range supported by Stata"
)
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
df.to_stata(path)
def test_out_of_range_float(self):
original = DataFrame(
{
"ColumnOk": [
0.0,
np.finfo(np.float32).eps,
np.finfo(np.float32).max / 10.0,
],
"ColumnTooBig": [
0.0,
np.finfo(np.float32).eps,
np.finfo(np.float32).max,
],
}
)
original.index.name = "index"
for col in original:
original[col] = original[col].astype(np.float32)
with tm.ensure_clean() as path:
original.to_stata(path)
reread = read_stata(path)
original["ColumnTooBig"] = original["ColumnTooBig"].astype(np.float64)
tm.assert_frame_equal(original, reread.set_index("index"))
original.loc[2, "ColumnTooBig"] = np.inf
msg = (
"Column ColumnTooBig has a maximum value of infinity which "
"is outside the range supported by Stata"
)
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
original.to_stata(path)
def test_path_pathlib(self):
df = tm.makeDataFrame()
df.index.name = "index"
reader = lambda x: read_stata(x).set_index("index")
result = tm.round_trip_pathlib(df.to_stata, reader)
tm.assert_frame_equal(df, result)
def test_pickle_path_localpath(self):
df = tm.makeDataFrame()
df.index.name = "index"
reader = lambda x: read_stata(x).set_index("index")
result = tm.round_trip_localpath(df.to_stata, reader)
tm.assert_frame_equal(df, result)
@pytest.mark.parametrize("write_index", [True, False])
def test_value_labels_iterator(self, write_index):
# GH 16923
d = {"A": ["B", "E", "C", "A", "E"]}
df = pd.DataFrame(data=d)
df["A"] = df["A"].astype("category")
with tm.ensure_clean() as path:
df.to_stata(path, write_index=write_index)
with pd.read_stata(path, iterator=True) as dta_iter:
value_labels = dta_iter.value_labels()
assert value_labels == {"A": {0: "A", 1: "B", 2: "C", 3: "E"}}
def test_set_index(self):
# GH 17328
df = tm.makeDataFrame()
df.index.name = "index"
with tm.ensure_clean() as path:
df.to_stata(path)
reread = pd.read_stata(path, index_col="index")
tm.assert_frame_equal(df, reread)
@pytest.mark.parametrize(
"column", ["ms", "day", "week", "month", "qtr", "half", "yr"]
)
def test_date_parsing_ignores_format_details(self, column):
# GH 17797
#
# Test that display formats are ignored when determining if a numeric
# column is a date value.
#
# All date types are stored as numbers and format associated with the
# column denotes both the type of the date and the display format.
#
# STATA supports 9 date types which each have distinct units. We test 7
# of the 9 types, ignoring %tC and %tb. %tC is a variant of %tc that
# accounts for leap seconds and %tb relies on STATAs business calendar.
df = read_stata(self.stata_dates)
unformatted = df.loc[0, column]
formatted = df.loc[0, column + "_fmt"]
assert unformatted == formatted
def test_writer_117(self):
original = DataFrame(
data=[
[
"string",
"object",
1,
1,
1,
1.1,
1.1,
np.datetime64("2003-12-25"),
"a",
"a" * 2045,
"a" * 5000,
"a",
],
[
"string-1",
"object-1",
1,
1,
1,
1.1,
1.1,
np.datetime64("2003-12-26"),
"b",
"b" * 2045,
"",
"",
],
],
columns=[
"string",
"object",
"int8",
"int16",
"int32",
"float32",
"float64",
"datetime",
"s1",
"s2045",
"srtl",
"forced_strl",
],
)
original["object"] = Series(original["object"], dtype=object)
original["int8"] = Series(original["int8"], dtype=np.int8)
original["int16"] = Series(original["int16"], dtype=np.int16)
original["int32"] = original["int32"].astype(np.int32)
original["float32"] = Series(original["float32"], dtype=np.float32)
original.index.name = "index"
original.index = original.index.astype(np.int32)
copy = original.copy()
with tm.ensure_clean() as path:
original.to_stata(
path,
convert_dates={"datetime": "tc"},
convert_strl=["forced_strl"],
version=117,
)
written_and_read_again = self.read_dta(path)
# original.index is np.int32, read index is np.int64
tm.assert_frame_equal(
written_and_read_again.set_index("index"),
original,
check_index_type=False,
)
tm.assert_frame_equal(original, copy)
def test_convert_strl_name_swap(self):
original = DataFrame(
[["a" * 3000, "A", "apple"], ["b" * 1000, "B", "banana"]],
columns=["long1" * 10, "long", 1],
)
original.index.name = "index"
with tm.assert_produces_warning(pd.io.stata.InvalidColumnName):
with tm.ensure_clean() as path:
original.to_stata(path, convert_strl=["long", 1], version=117)
reread = self.read_dta(path)
reread = reread.set_index("index")
reread.columns = original.columns
tm.assert_frame_equal(reread, original, check_index_type=False)
def test_invalid_date_conversion(self):
# GH 12259
dates = [
dt.datetime(1999, 12, 31, 12, 12, 12, 12000),
dt.datetime(2012, 12, 21, 12, 21, 12, 21000),
dt.datetime(1776, 7, 4, 7, 4, 7, 4000),
]
original = pd.DataFrame(
{
"nums": [1.0, 2.0, 3.0],
"strs": ["apple", "banana", "cherry"],
"dates": dates,
}
)
with tm.ensure_clean() as path:
msg = "convert_dates key must be a column or an integer"
with pytest.raises(ValueError, match=msg):
original.to_stata(path, convert_dates={"wrong_name": "tc"})
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_nonfile_writing(self, version):
# GH 21041
bio = io.BytesIO()
df = tm.makeDataFrame()
df.index.name = "index"
with tm.ensure_clean() as path:
df.to_stata(bio, version=version)
bio.seek(0)
with open(path, "wb") as dta:
dta.write(bio.read())
reread = pd.read_stata(path, index_col="index")
tm.assert_frame_equal(df, reread)
def test_gzip_writing(self):
# writing version 117 requires seek and cannot be used with gzip
df = tm.makeDataFrame()
df.index.name = "index"
with tm.ensure_clean() as path:
with gzip.GzipFile(path, "wb") as gz:
df.to_stata(gz, version=114)
with gzip.GzipFile(path, "rb") as gz:
reread = pd.read_stata(gz, index_col="index")
tm.assert_frame_equal(df, reread)
def test_unicode_dta_118(self):
unicode_df = self.read_dta(self.dta25_118)
columns = ["utf8", "latin1", "ascii", "utf8_strl", "ascii_strl"]
values = [
["ραηδας", "PÄNDÄS", "p", "ραηδας", "p"],
["ƤĀńĐąŜ", "Ö", "a", "ƤĀńĐąŜ", "a"],
["ᴘᴀᴎᴅᴀS", "Ü", "n", "ᴘᴀᴎᴅᴀS", "n"],
[" ", " ", "d", " ", "d"],
[" ", "", "a", " ", "a"],
["", "", "s", "", "s"],
["", "", " ", "", " "],
]
expected = pd.DataFrame(values, columns=columns)
tm.assert_frame_equal(unicode_df, expected)
def test_mixed_string_strl(self):
# GH 23633
output = [{"mixed": "string" * 500, "number": 0}, {"mixed": None, "number": 1}]
output = pd.DataFrame(output)
output.number = output.number.astype("int32")
with tm.ensure_clean() as path:
output.to_stata(path, write_index=False, version=117)
reread = read_stata(path)
expected = output.fillna("")
tm.assert_frame_equal(reread, expected)
# Check strl supports all None (null)
output.loc[:, "mixed"] = None
output.to_stata(
path, write_index=False, convert_strl=["mixed"], version=117
)
reread = read_stata(path)
expected = output.fillna("")
tm.assert_frame_equal(reread, expected)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_all_none_exception(self, version):
output = [{"none": "none", "number": 0}, {"none": None, "number": 1}]
output = pd.DataFrame(output)
output.loc[:, "none"] = None
with tm.ensure_clean() as path:
with pytest.raises(ValueError, match="Column `none` cannot be exported"):
output.to_stata(path, version=version)
@pytest.mark.parametrize("version", [114, 117, 118, 119, None])
def test_invalid_file_not_written(self, version):
content = "Here is one __<5F>__ Another one __·__ Another one __½__"
df = DataFrame([content], columns=["invalid"])
with tm.ensure_clean() as path:
msg1 = (
r"'latin-1' codec can't encode character '\\ufffd'"
r" in position 14: ordinal not in range\(256\)"
)
msg2 = (
"'ascii' codec can't decode byte 0xef in position 14:"
r" ordinal not in range\(128\)"
)
with pytest.raises(UnicodeEncodeError, match=r"{}|{}".format(msg1, msg2)):
with tm.assert_produces_warning(ResourceWarning):
df.to_stata(path)
def test_strl_latin1(self):
# GH 23573, correct GSO data to reflect correct size
output = DataFrame(
[["pandas"] * 2, ["þâÑÐŧ"] * 2], columns=["var_str", "var_strl"]
)
with tm.ensure_clean() as path:
output.to_stata(path, version=117, convert_strl=["var_strl"])
with open(path, "rb") as reread:
content = reread.read()
expected = "þâÑÐŧ"
assert expected.encode("latin-1") in content
assert expected.encode("utf-8") in content
gsos = content.split(b"strls")[1][1:-2]
for gso in gsos.split(b"GSO")[1:]:
val = gso.split(b"\x00")[-2]
size = gso[gso.find(b"\x82") + 1]
assert len(val) == size - 1
def test_encoding_latin1_118(self):
# GH 25960
msg = """
One or more strings in the dta file could not be decoded using utf-8, and
so the fallback encoding of latin-1 is being used. This can happen when a file
has been incorrectly encoded by Stata or some other software. You should verify
the string values returned are correct."""
with tm.assert_produces_warning(UnicodeWarning) as w:
encoded = read_stata(self.dta_encoding_118)
assert len(w) == 151
assert w[0].message.args[0] == msg
expected = pd.DataFrame([["Düsseldorf"]] * 151, columns=["kreis1849"])
tm.assert_frame_equal(encoded, expected)
@pytest.mark.slow
def test_stata_119(self):
# Gzipped since contains 32,999 variables and uncompressed is 20MiB
with gzip.open(self.dta26_119, "rb") as gz:
df = read_stata(gz)
assert df.shape == (1, 32999)
assert df.iloc[0, 6] == "A" * 3000
assert df.iloc[0, 7] == 3.14
assert df.iloc[0, -1] == 1
assert df.iloc[0, 0] == pd.Timestamp(datetime(2012, 12, 21, 21, 12, 21))
@pytest.mark.parametrize("version", [118, 119, None])
def test_utf8_writer(self, version):
cat = pd.Categorical(["a", "β", "ĉ"], ordered=True)
data = pd.DataFrame(
[
[1.0, 1, "", "ᴀ relatively long ŝtring"],
[2.0, 2, "", ""],
[3.0, 3, "", None],
],
columns=["a", "β", "ĉ", "strls"],
)
data["ᴐᴬᵀ"] = cat
variable_labels = {
"a": "apple",
"β": "ᵈᵉᵊ",
"ĉ": "ᴎტჄႲႳႴႶႺ",
"strls": "Long Strings",
"ᴐᴬᵀ": "",
}
data_label = "ᴅaᵀa-label"
data["β"] = data["β"].astype(np.int32)
with tm.ensure_clean() as path:
writer = StataWriterUTF8(
path,
data,
data_label=data_label,
convert_strl=["strls"],
variable_labels=variable_labels,
write_index=False,
version=version,
)
writer.write_file()
reread_encoded = read_stata(path)
# Missing is intentionally converted to empty strl
data["strls"] = data["strls"].fillna("")
tm.assert_frame_equal(data, reread_encoded)
reader = StataReader(path)
assert reader.data_label == data_label
assert reader.variable_labels() == variable_labels
data.to_stata(path, version=version, write_index=False)
reread_to_stata = read_stata(path)
tm.assert_frame_equal(data, reread_to_stata)
def test_writer_118_exceptions(self):
df = DataFrame(np.zeros((1, 33000), dtype=np.int8))
with tm.ensure_clean() as path:
with pytest.raises(ValueError, match="version must be either 118 or 119."):
StataWriterUTF8(path, df, version=117)
with tm.ensure_clean() as path:
with pytest.raises(ValueError, match="You must use version 119"):
StataWriterUTF8(path, df, version=118)