79 lines
1.8 KiB
Python
79 lines
1.8 KiB
Python
|
import os
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
import pandas.compat as compat
|
||
|
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
def test_rands():
|
||
|
r = tm.rands(10)
|
||
|
assert len(r) == 10
|
||
|
|
||
|
|
||
|
def test_rands_array_1d():
|
||
|
arr = tm.rands_array(5, size=10)
|
||
|
assert arr.shape == (10,)
|
||
|
assert len(arr[0]) == 5
|
||
|
|
||
|
|
||
|
def test_rands_array_2d():
|
||
|
arr = tm.rands_array(7, size=(10, 10))
|
||
|
assert arr.shape == (10, 10)
|
||
|
assert len(arr[1, 1]) == 7
|
||
|
|
||
|
|
||
|
def test_numpy_err_state_is_default():
|
||
|
expected = {"over": "warn", "divide": "warn", "invalid": "warn", "under": "ignore"}
|
||
|
import numpy as np
|
||
|
|
||
|
# The error state should be unchanged after that import.
|
||
|
assert np.geterr() == expected
|
||
|
|
||
|
|
||
|
def test_convert_rows_list_to_csv_str():
|
||
|
rows_list = ["aaa", "bbb", "ccc"]
|
||
|
ret = tm.convert_rows_list_to_csv_str(rows_list)
|
||
|
|
||
|
if compat.is_platform_windows():
|
||
|
expected = "aaa\r\nbbb\r\nccc\r\n"
|
||
|
else:
|
||
|
expected = "aaa\nbbb\nccc\n"
|
||
|
|
||
|
assert ret == expected
|
||
|
|
||
|
|
||
|
def test_create_temp_directory():
|
||
|
with tm.ensure_clean_dir() as path:
|
||
|
assert os.path.exists(path)
|
||
|
assert os.path.isdir(path)
|
||
|
assert not os.path.exists(path)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("strict_data_files", [True, False])
|
||
|
def test_datapath_missing(datapath):
|
||
|
with pytest.raises(ValueError, match="Could not find file"):
|
||
|
datapath("not_a_file")
|
||
|
|
||
|
|
||
|
def test_datapath(datapath):
|
||
|
args = ("data", "iris.csv")
|
||
|
|
||
|
result = datapath(*args)
|
||
|
expected = os.path.join(os.path.dirname(os.path.dirname(__file__)), *args)
|
||
|
|
||
|
assert result == expected
|
||
|
|
||
|
|
||
|
def test_rng_context():
|
||
|
import numpy as np
|
||
|
|
||
|
expected0 = 1.764052345967664
|
||
|
expected1 = 1.6243453636632417
|
||
|
|
||
|
with tm.RNGContext(0):
|
||
|
with tm.RNGContext(1):
|
||
|
assert np.random.randn() == expected1
|
||
|
assert np.random.randn() == expected0
|