"""lti.py The lti module contains the LTI parent class to the child classes StateSpace and TransferFunction. It is designed for use in the python-control library. Routines in this module: LTI.__init__ isdtime() isctime() timebase() timebaseEqual() """ import numpy as np from numpy import absolute, real __all__ = ['issiso', 'timebase', 'timebaseEqual', 'isdtime', 'isctime', 'pole', 'zero', 'damp', 'evalfr', 'freqresp', 'dcgain'] class LTI: """LTI is a parent class to linear time-invariant (LTI) system objects. LTI is the parent to the StateSpace and TransferFunction child classes. It contains the number of inputs and outputs, and the timebase (dt) for the system. The timebase for the system, dt, is used to specify whether the system is operating in continuous or discrete time. It can have the following values: * dt = None No timebase specified * dt = 0 Continuous time system * dt > 0 Discrete time system with sampling time dt * dt = True Discrete time system with unspecified sampling time When two LTI systems are combined, their timebases much match. A system with timebase None can be combined with a system having a specified timebase, and the result will have the timebase of the latter system. """ def __init__(self, inputs=1, outputs=1, dt=None): """Assign the LTI object's numbers of inputs and ouputs.""" # Data members common to StateSpace and TransferFunction. self.inputs = inputs self.outputs = outputs self.dt = dt def isdtime(self, strict=False): """ Check to see if a system is a discrete-time system Parameters ---------- strict: bool, optional If strict is True, make sure that timebase is not None. Default is False. """ # If no timebase is given, answer depends on strict flag if self.dt == None: return True if not strict else False # Look for dt > 0 (also works if dt = True) return self.dt > 0 def isctime(self, strict=False): """ Check to see if a system is a continuous-time system Parameters ---------- sys : LTI system System to be checked strict: bool, optional If strict is True, make sure that timebase is not None. Default is False. """ # If no timebase is given, answer depends on strict flag if self.dt is None: return True if not strict else False return self.dt == 0 def issiso(self): '''Check to see if a system is single input, single output''' return self.inputs == 1 and self.outputs == 1 def damp(self): '''Natural frequency, damping ratio of system poles Returns ------- wn : array Natural frequencies for each system pole zeta : array Damping ratio for each system pole poles : array Array of system poles ''' poles = self.pole() if isdtime(self, strict=True): splane_poles = np.log(poles)/self.dt else: splane_poles = poles wn = absolute(splane_poles) Z = -real(splane_poles)/wn return wn, Z, poles def dcgain(self): """Return the zero-frequency gain""" raise NotImplementedError("dcgain not implemented for %s objects" % str(self.__class__)) # Test to see if a system is SISO def issiso(sys, strict=False): """ Check to see if a system is single input, single output Parameters ---------- sys : LTI system System to be checked strict: bool (default = False) If strict is True, do not treat scalars as SISO """ if isinstance(sys, (int, float, complex, np.number)) and not strict: return True elif not isinstance(sys, LTI): raise ValueError("Object is not an LTI system") # Done with the tricky stuff... return sys.issiso() # Return the timebase (with conversion if unspecified) def timebase(sys, strict=True): """Return the timebase for an LTI system dt = timebase(sys) returns the timebase for a system 'sys'. If the strict option is set to False, dt = True will be returned as 1. """ # System needs to be either a constant or an LTI system if isinstance(sys, (int, float, complex, np.number)): return None elif not isinstance(sys, LTI): raise ValueError("Timebase not defined") # Return the sample time, with converstion to float if strict is false if (sys.dt == None): return None elif (strict): return float(sys.dt) return sys.dt # Check to see if two timebases are equal def timebaseEqual(sys1, sys2): """Check to see if two systems have the same timebase timebaseEqual(sys1, sys2) returns True if the timebases for the two systems are compatible. By default, systems with timebase 'None' are compatible with either discrete or continuous timebase systems. If two systems have a discrete timebase (dt > 0) then their timebases must be equal. """ if (type(sys1.dt) == bool or type(sys2.dt) == bool): # Make sure both are unspecified discrete timebases return type(sys1.dt) == type(sys2.dt) and sys1.dt == sys2.dt elif (sys1.dt is None or sys2.dt is None): # One or the other is unspecified => the other can be anything return True else: return sys1.dt == sys2.dt # Find a common timebase between two or more systems def _find_timebase(sys1, *sysn): """Find the common timebase between systems, otherwise return False""" # Create a list of systems to check syslist = [sys1] syslist.append(*sysn) # Look for a common timebase dt = None for sys in syslist: # Make sure time bases are consistent if (dt is None and sys.dt is not None) or \ (dt is True and isdiscrete(sys)): # Timebase was not specified; set to match this system dt = sys.dt elif dt != sys.dt: return False return dt # Check to see if a system is a discrete time system def isdtime(sys, strict=False): """ Check to see if a system is a discrete time system Parameters ---------- sys : LTI system System to be checked strict: bool (default = False) If strict is True, make sure that timebase is not None """ # Check to see if this is a constant if isinstance(sys, (int, float, complex, np.number)): # OK as long as strict checking is off return True if not strict else False # Check for a transfer function or state-space object if isinstance(sys, LTI): return sys.isdtime(strict) # Check to see if object has a dt object if hasattr(sys, 'dt'): # If no timebase is given, answer depends on strict flag if sys.dt == None: return True if not strict else False # Look for dt > 0 (also works if dt = True) return sys.dt > 0 # Got passed something we don't recognize return False # Check to see if a system is a continuous time system def isctime(sys, strict=False): """ Check to see if a system is a continuous-time system Parameters ---------- sys : LTI system System to be checked strict: bool (default = False) If strict is True, make sure that timebase is not None """ # Check to see if this is a constant if isinstance(sys, (int, float, complex, np.number)): # OK as long as strict checking is off return True if not strict else False # Check for a transfer function or state space object if isinstance(sys, LTI): return sys.isctime(strict) # Check to see if object has a dt object if hasattr(sys, 'dt'): # If no timebase is given, answer depends on strict flag if sys.dt is None: return True if not strict else False return sys.dt == 0 # Got passed something we don't recognize return False def pole(sys): """ Compute system poles. Parameters ---------- sys: StateSpace or TransferFunction Linear system Returns ------- poles: ndarray Array that contains the system's poles. Raises ------ NotImplementedError when called on a TransferFunction object See Also -------- zero TransferFunction.pole StateSpace.pole """ return sys.pole() def zero(sys): """ Compute system zeros. Parameters ---------- sys: StateSpace or TransferFunction Linear system Returns ------- zeros: ndarray Array that contains the system's zeros. Raises ------ NotImplementedError when called on a MIMO system See Also -------- pole StateSpace.zero TransferFunction.zero """ return sys.zero() def damp(sys, doprint=True): """ Compute natural frequency, damping ratio, and poles of a system The function takes 1 or 2 parameters Parameters ---------- sys: LTI (StateSpace or TransferFunction) A linear system object doprint: if true, print table with values Returns ------- wn: array Natural frequencies of the poles damping: array Damping values poles: array Pole locations Algorithm --------- If the system is continuous, wn = abs(poles) Z = -real(poles)/poles. If the system is discrete, the discrete poles are mapped to their equivalent location in the s-plane via s = log10(poles)/dt and wn = abs(s) Z = -real(s)/wn. See Also -------- pole """ wn, damping, poles = sys.damp() if doprint: print('_____Eigenvalue______ Damping___ Frequency_') for p, d, w in zip(poles, damping, wn) : if abs(p.imag) < 1e-12: print("%10.4g %10.4g %10.4g" % (p.real, 1.0, -p.real)) else: print("%10.4g%+10.4gj %10.4g %10.4g" % (p.real, p.imag, d, w)) return wn, damping, poles def evalfr(sys, x): """ Evaluate the transfer function of an LTI system for a single complex number x. To evaluate at a frequency, enter x = omega*j, where omega is the frequency in radians Parameters ---------- sys: StateSpace or TransferFunction Linear system x: scalar Complex number Returns ------- fresp: ndarray See Also -------- freqresp bode Notes ----- This function is a wrapper for StateSpace.evalfr and TransferFunction.evalfr. Examples -------- >>> sys = ss("1. -2; 3. -4", "5.; 7", "6. 8", "9.") >>> evalfr(sys, 1j) array([[ 44.8-21.4j]]) >>> # This is the transfer function matrix evaluated at s = i. .. todo:: Add example with MIMO system """ if issiso(sys): return sys.horner(x)[0][0] return sys.horner(x) def freqresp(sys, omega): """ Frequency response of an LTI system at multiple angular frequencies. Parameters ---------- sys: StateSpace or TransferFunction Linear system omega: array_like List of frequencies Returns ------- mag: ndarray phase: ndarray omega: list, tuple, or ndarray See Also -------- evalfr bode Notes ----- This function is a wrapper for StateSpace.freqresp and TransferFunction.freqresp. The output omega is a sorted version of the input omega. Examples -------- >>> sys = ss("1. -2; 3. -4", "5.; 7", "6. 8", "9.") >>> mag, phase, omega = freqresp(sys, [0.1, 1., 10.]) >>> mag array([[[ 58.8576682 , 49.64876635, 13.40825927]]]) >>> phase array([[[-0.05408304, -0.44563154, -0.66837155]]]) .. todo:: Add example with MIMO system #>>> sys = rss(3, 2, 2) #>>> mag, phase, omega = freqresp(sys, [0.1, 1., 10.]) #>>> mag[0, 1, :] #array([ 55.43747231, 42.47766549, 1.97225895]) #>>> phase[1, 0, :] #array([-0.12611087, -1.14294316, 2.5764547 ]) #>>> # This is the magnitude of the frequency response from the 2nd #>>> # input to the 1st output, and the phase (in radians) of the #>>> # frequency response from the 1st input to the 2nd output, for #>>> # s = 0.1i, i, 10i. """ return sys.freqresp(omega) def dcgain(sys): """Return the zero-frequency (or DC) gain of the given system Returns ------- gain : ndarray The zero-frequency gain, or np.nan if the system has a pole at the origin """ return sys.dcgain()