""" Tests for DatetimeArray """ import operator import numpy as np import pytest from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd import pandas._testing as tm from pandas.core.arrays import DatetimeArray from pandas.core.arrays.datetimes import sequence_to_dt64ns class TestDatetimeArrayConstructor: def test_from_sequence_invalid_type(self): mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)]) with pytest.raises(TypeError, match="Cannot create a DatetimeArray"): DatetimeArray._from_sequence(mi) def test_only_1dim_accepted(self): arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]") with pytest.raises(ValueError, match="Only 1-dimensional"): # 3-dim, we allow 2D to sneak in for ops purposes GH#29853 DatetimeArray(arr.reshape(2, 2, 1)) with pytest.raises(ValueError, match="Only 1-dimensional"): # 0-dim DatetimeArray(arr[[0]].squeeze()) def test_freq_validation(self): # GH#24623 check that invalid instances cannot be created with the # public constructor arr = np.arange(5, dtype=np.int64) * 3600 * 10 ** 9 msg = ( "Inferred frequency H from passed values does not " "conform to passed frequency W-SUN" ) with pytest.raises(ValueError, match=msg): DatetimeArray(arr, freq="W") @pytest.mark.parametrize( "meth", [ DatetimeArray._from_sequence, sequence_to_dt64ns, pd.to_datetime, pd.DatetimeIndex, ], ) def test_mixing_naive_tzaware_raises(self, meth): # GH#24569 arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]) msg = ( "Cannot mix tz-aware with tz-naive values|" "Tz-aware datetime.datetime cannot be converted " "to datetime64 unless utc=True" ) for obj in [arr, arr[::-1]]: # check that we raise regardless of whether naive is found # before aware or vice-versa with pytest.raises(ValueError, match=msg): meth(obj) def test_from_pandas_array(self): arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10 ** 9 result = DatetimeArray._from_sequence(arr, freq="infer") expected = pd.date_range("1970-01-01", periods=5, freq="H")._data tm.assert_datetime_array_equal(result, expected) def test_mismatched_timezone_raises(self): arr = DatetimeArray( np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"), dtype=DatetimeTZDtype(tz="US/Central"), ) dtype = DatetimeTZDtype(tz="US/Eastern") with pytest.raises(TypeError, match="Timezone of the array"): DatetimeArray(arr, dtype=dtype) def test_non_array_raises(self): with pytest.raises(ValueError, match="list"): DatetimeArray([1, 2, 3]) def test_other_type_raises(self): with pytest.raises( ValueError, match="The dtype of 'values' is incorrect.*bool" ): DatetimeArray(np.array([1, 2, 3], dtype="bool")) def test_incorrect_dtype_raises(self): with pytest.raises(ValueError, match="Unexpected value for 'dtype'."): DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category") def test_freq_infer_raises(self): with pytest.raises(ValueError, match="Frequency inference"): DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer") def test_copy(self): data = np.array([1, 2, 3], dtype="M8[ns]") arr = DatetimeArray(data, copy=False) assert arr._data is data arr = DatetimeArray(data, copy=True) assert arr._data is not data class TestDatetimeArrayComparisons: # TODO: merge this into tests/arithmetic/test_datetime64 once it is # sufficiently robust def test_cmp_dt64_arraylike_tznaive(self, all_compare_operators): # arbitrary tz-naive DatetimeIndex opname = all_compare_operators.strip("_") op = getattr(operator, opname) dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None) arr = DatetimeArray(dti) assert arr.freq == dti.freq assert arr.tz == dti.tz right = dti expected = np.ones(len(arr), dtype=bool) if opname in ["ne", "gt", "lt"]: # for these the comparisons should be all-False expected = ~expected result = op(arr, arr) tm.assert_numpy_array_equal(result, expected) for other in [right, np.array(right)]: # TODO: add list and tuple, and object-dtype once those # are fixed in the constructor result = op(arr, other) tm.assert_numpy_array_equal(result, expected) result = op(other, arr) tm.assert_numpy_array_equal(result, expected) class TestDatetimeArray: def test_astype_to_same(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False) assert result is arr @pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"]) @pytest.mark.parametrize( "other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"] ) def test_astype_copies(self, dtype, other): # https://github.com/pandas-dev/pandas/pull/32490 s = pd.Series([1, 2], dtype=dtype) orig = s.copy() t = s.astype(other) t[:] = pd.NaT tm.assert_series_equal(s, orig) @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"]) def test_astype_int(self, dtype): arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")]) result = arr.astype(dtype) if np.dtype(dtype).kind == "u": expected_dtype = np.dtype("uint64") else: expected_dtype = np.dtype("int64") expected = arr.astype(expected_dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected) def test_tz_setter_raises(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") with pytest.raises(AttributeError, match="tz_localize"): arr.tz = "UTC" def test_setitem_different_tz_raises(self): data = np.array([1, 2, 3], dtype="M8[ns]") arr = DatetimeArray(data, copy=False, dtype=DatetimeTZDtype(tz="US/Central")) with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"): arr[0] = pd.Timestamp("2000") with pytest.raises(ValueError, match="US/Central"): arr[0] = pd.Timestamp("2000", tz="US/Eastern") def test_setitem_clears_freq(self): a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central")) a[0] = pd.Timestamp("2000", tz="US/Central") assert a.freq is None @pytest.mark.parametrize( "obj", [ pd.Timestamp.now(), pd.Timestamp.now().to_datetime64(), pd.Timestamp.now().to_pydatetime(), ], ) def test_setitem_objects(self, obj): # make sure we accept datetime64 and datetime in addition to Timestamp dti = pd.date_range("2000", periods=2, freq="D") arr = dti._data arr[0] = obj assert arr[0] == obj def test_repeat_preserves_tz(self): dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") arr = DatetimeArray(dti) repeated = arr.repeat([1, 1]) # preserves tz and values, but not freq expected = DatetimeArray(arr.asi8, freq=None, dtype=arr.dtype) tm.assert_equal(repeated, expected) def test_value_counts_preserves_tz(self): dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") arr = DatetimeArray(dti).repeat([4, 3]) result = arr.value_counts() # Note: not tm.assert_index_equal, since `freq`s do not match assert result.index.equals(dti) arr[-2] = pd.NaT result = arr.value_counts() expected = pd.Series([1, 4, 2], index=[pd.NaT, dti[0], dti[1]]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["pad", "backfill"]) def test_fillna_preserves_tz(self, method): dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central") arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == "pad" else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], freq=None, tz="US/Central" ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central") def test_array_interface_tz(self): tz = "US/Central" data = DatetimeArray(pd.date_range("2017", periods=2, tz=tz)) result = np.asarray(data) expected = np.array( [ pd.Timestamp("2017-01-01T00:00:00", tz=tz), pd.Timestamp("2017-01-02T00:00:00", tz=tz), ], dtype=object, ) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype="M8[ns]") expected = np.array( ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]" ) tm.assert_numpy_array_equal(result, expected) def test_array_interface(self): data = DatetimeArray(pd.date_range("2017", periods=2)) expected = np.array( ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]" ) result = np.asarray(data) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) expected = np.array( [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")], dtype=object, ) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("index", [True, False]) def test_searchsorted_different_tz(self, index): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = DatetimeArray(data, freq="D").tz_localize("Asia/Tokyo") if index: arr = pd.Index(arr) expected = arr.searchsorted(arr[2]) result = arr.searchsorted(arr[2].tz_convert("UTC")) assert result == expected expected = arr.searchsorted(arr[2:6]) result = arr.searchsorted(arr[2:6].tz_convert("UTC")) tm.assert_equal(result, expected) @pytest.mark.parametrize("index", [True, False]) def test_searchsorted_tzawareness_compat(self, index): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = DatetimeArray(data, freq="D") if index: arr = pd.Index(arr) mismatch = arr.tz_localize("Asia/Tokyo") msg = "Cannot compare tz-naive and tz-aware datetime-like objects" with pytest.raises(TypeError, match=msg): arr.searchsorted(mismatch[0]) with pytest.raises(TypeError, match=msg): arr.searchsorted(mismatch) with pytest.raises(TypeError, match=msg): mismatch.searchsorted(arr[0]) with pytest.raises(TypeError, match=msg): mismatch.searchsorted(arr) @pytest.mark.parametrize( "other", [ 1, np.int64(1), 1.0, np.timedelta64("NaT"), pd.Timedelta(days=2), "invalid", np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9, np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10 ** 9, pd.Timestamp.now().to_period("D"), ], ) @pytest.mark.parametrize( "index", [ True, pytest.param( False, marks=pytest.mark.xfail( reason="Raises ValueError instead of TypeError", raises=ValueError ), ), ], ) def test_searchsorted_invalid_types(self, other, index): data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9 arr = DatetimeArray(data, freq="D") if index: arr = pd.Index(arr) msg = "searchsorted requires compatible dtype or scalar" with pytest.raises(TypeError, match=msg): arr.searchsorted(other) class TestSequenceToDT64NS: def test_tz_dtype_mismatch_raises(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") with pytest.raises(TypeError, match="data is already tz-aware"): sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC")) def test_tz_dtype_matches(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") result, _, _ = sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="US/Central")) tm.assert_numpy_array_equal(arr._data, result) class TestReductions: @pytest.mark.parametrize("tz", [None, "US/Central"]) def test_min_max(self, tz): arr = DatetimeArray._from_sequence( [ "2000-01-03", "2000-01-03", "NaT", "2000-01-02", "2000-01-05", "2000-01-04", ], tz=tz, ) result = arr.min() expected = pd.Timestamp("2000-01-02", tz=tz) assert result == expected result = arr.max() expected = pd.Timestamp("2000-01-05", tz=tz) assert result == expected result = arr.min(skipna=False) assert result is pd.NaT result = arr.max(skipna=False) assert result is pd.NaT @pytest.mark.parametrize("tz", [None, "US/Central"]) @pytest.mark.parametrize("skipna", [True, False]) def test_min_max_empty(self, skipna, tz): arr = DatetimeArray._from_sequence([], tz=tz) result = arr.min(skipna=skipna) assert result is pd.NaT result = arr.max(skipna=skipna) assert result is pd.NaT