"""Rudimentary Apache Arrow-backed ExtensionArray. At the moment, just a boolean array / type is implemented. Eventually, we'll want to parametrize the type and support multiple dtypes. Not all methods are implemented yet, and the current implementation is not efficient. """ import copy import itertools import numpy as np import pyarrow as pa import pandas as pd from pandas.api.extensions import ( ExtensionArray, ExtensionDtype, register_extension_dtype, take, ) @register_extension_dtype class ArrowBoolDtype(ExtensionDtype): type = np.bool_ kind = "b" name = "arrow_bool" na_value = pa.NULL @classmethod def construct_from_string(cls, string): if string == cls.name: return cls() else: raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'") @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype. Returns ------- type """ return ArrowBoolArray def _is_boolean(self): return True @register_extension_dtype class ArrowStringDtype(ExtensionDtype): type = str kind = "U" name = "arrow_string" na_value = pa.NULL @classmethod def construct_from_string(cls, string): if string == cls.name: return cls() else: raise TypeError(f"Cannot construct a '{cls}' from '{string}'") @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype. Returns ------- type """ return ArrowStringArray class ArrowExtensionArray(ExtensionArray): @classmethod def from_scalars(cls, values): arr = pa.chunked_array([pa.array(np.asarray(values))]) return cls(arr) @classmethod def from_array(cls, arr): assert isinstance(arr, pa.Array) return cls(pa.chunked_array([arr])) @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return cls.from_scalars(scalars) def __repr__(self): return f"{type(self).__name__}({repr(self._data)})" def __getitem__(self, item): if pd.api.types.is_scalar(item): return self._data.to_pandas()[item] else: vals = self._data.to_pandas()[item] return type(self).from_scalars(vals) def __len__(self): return len(self._data) def astype(self, dtype, copy=True): # needed to fix this astype for the Series constructor. if isinstance(dtype, type(self.dtype)) and dtype == self.dtype: if copy: return self.copy() return self return super().astype(dtype, copy) @property def dtype(self): return self._dtype @property def nbytes(self): return sum( x.size for chunk in self._data.chunks for x in chunk.buffers() if x is not None ) def isna(self): nas = pd.isna(self._data.to_pandas()) return type(self).from_scalars(nas) def take(self, indices, allow_fill=False, fill_value=None): data = self._data.to_pandas() if allow_fill and fill_value is None: fill_value = self.dtype.na_value result = take(data, indices, fill_value=fill_value, allow_fill=allow_fill) return self._from_sequence(result, dtype=self.dtype) def copy(self): return type(self)(copy.copy(self._data)) @classmethod def _concat_same_type(cls, to_concat): chunks = list(itertools.chain.from_iterable(x._data.chunks for x in to_concat)) arr = pa.chunked_array(chunks) return cls(arr) def __invert__(self): return type(self).from_scalars(~self._data.to_pandas()) def _reduce(self, method, skipna=True, **kwargs): if skipna: arr = self[~self.isna()] else: arr = self try: op = getattr(arr, method) except AttributeError: raise TypeError return op(**kwargs) def any(self, axis=0, out=None): return self._data.to_pandas().any() def all(self, axis=0, out=None): return self._data.to_pandas().all() class ArrowBoolArray(ArrowExtensionArray): def __init__(self, values): if not isinstance(values, pa.ChunkedArray): raise ValueError assert values.type == pa.bool_() self._data = values self._dtype = ArrowBoolDtype() class ArrowStringArray(ArrowExtensionArray): def __init__(self, values): if not isinstance(values, pa.ChunkedArray): raise ValueError assert values.type == pa.string() self._data = values self._dtype = ArrowStringDtype()