import itertools import numpy as np import pytest import pandas as pd from pandas.core.internals import ExtensionBlock from .base import BaseExtensionTests class BaseReshapingTests(BaseExtensionTests): """Tests for reshaping and concatenation.""" @pytest.mark.parametrize("in_frame", [True, False]) def test_concat(self, data, in_frame): wrapped = pd.Series(data) if in_frame: wrapped = pd.DataFrame(wrapped) result = pd.concat([wrapped, wrapped], ignore_index=True) assert len(result) == len(data) * 2 if in_frame: dtype = result.dtypes[0] else: dtype = result.dtype assert dtype == data.dtype assert isinstance(result._data.blocks[0], ExtensionBlock) @pytest.mark.parametrize("in_frame", [True, False]) def test_concat_all_na_block(self, data_missing, in_frame): valid_block = pd.Series(data_missing.take([1, 1]), index=[0, 1]) na_block = pd.Series(data_missing.take([0, 0]), index=[2, 3]) if in_frame: valid_block = pd.DataFrame({"a": valid_block}) na_block = pd.DataFrame({"a": na_block}) result = pd.concat([valid_block, na_block]) if in_frame: expected = pd.DataFrame({"a": data_missing.take([1, 1, 0, 0])}) self.assert_frame_equal(result, expected) else: expected = pd.Series(data_missing.take([1, 1, 0, 0])) self.assert_series_equal(result, expected) def test_concat_mixed_dtypes(self, data): # https://github.com/pandas-dev/pandas/issues/20762 df1 = pd.DataFrame({"A": data[:3]}) df2 = pd.DataFrame({"A": [1, 2, 3]}) df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category") dfs = [df1, df2, df3] # dataframes result = pd.concat(dfs) expected = pd.concat([x.astype(object) for x in dfs]) self.assert_frame_equal(result, expected) # series result = pd.concat([x["A"] for x in dfs]) expected = pd.concat([x["A"].astype(object) for x in dfs]) self.assert_series_equal(result, expected) # simple test for just EA and one other result = pd.concat([df1, df2]) expected = pd.concat([df1.astype("object"), df2.astype("object")]) self.assert_frame_equal(result, expected) result = pd.concat([df1["A"], df2["A"]]) expected = pd.concat([df1["A"].astype("object"), df2["A"].astype("object")]) self.assert_series_equal(result, expected) def test_concat_columns(self, data, na_value): df1 = pd.DataFrame({"A": data[:3]}) df2 = pd.DataFrame({"B": [1, 2, 3]}) expected = pd.DataFrame({"A": data[:3], "B": [1, 2, 3]}) result = pd.concat([df1, df2], axis=1) self.assert_frame_equal(result, expected) result = pd.concat([df1["A"], df2["B"]], axis=1) self.assert_frame_equal(result, expected) # non-aligned df2 = pd.DataFrame({"B": [1, 2, 3]}, index=[1, 2, 3]) expected = pd.DataFrame( { "A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype), "B": [np.nan, 1, 2, 3], } ) result = pd.concat([df1, df2], axis=1) self.assert_frame_equal(result, expected) result = pd.concat([df1["A"], df2["B"]], axis=1) self.assert_frame_equal(result, expected) def test_concat_extension_arrays_copy_false(self, data, na_value): # GH 20756 df1 = pd.DataFrame({"A": data[:3]}) df2 = pd.DataFrame({"B": data[3:7]}) expected = pd.DataFrame( { "A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype), "B": data[3:7], } ) result = pd.concat([df1, df2], axis=1, copy=False) self.assert_frame_equal(result, expected) def test_align(self, data, na_value): a = data[:3] b = data[2:5] r1, r2 = pd.Series(a).align(pd.Series(b, index=[1, 2, 3])) # Assumes that the ctor can take a list of scalars of the type e1 = pd.Series(data._from_sequence(list(a) + [na_value], dtype=data.dtype)) e2 = pd.Series(data._from_sequence([na_value] + list(b), dtype=data.dtype)) self.assert_series_equal(r1, e1) self.assert_series_equal(r2, e2) def test_align_frame(self, data, na_value): a = data[:3] b = data[2:5] r1, r2 = pd.DataFrame({"A": a}).align(pd.DataFrame({"A": b}, index=[1, 2, 3])) # Assumes that the ctor can take a list of scalars of the type e1 = pd.DataFrame( {"A": data._from_sequence(list(a) + [na_value], dtype=data.dtype)} ) e2 = pd.DataFrame( {"A": data._from_sequence([na_value] + list(b), dtype=data.dtype)} ) self.assert_frame_equal(r1, e1) self.assert_frame_equal(r2, e2) def test_align_series_frame(self, data, na_value): # https://github.com/pandas-dev/pandas/issues/20576 ser = pd.Series(data, name="a") df = pd.DataFrame({"col": np.arange(len(ser) + 1)}) r1, r2 = ser.align(df) e1 = pd.Series( data._from_sequence(list(data) + [na_value], dtype=data.dtype), name=ser.name, ) self.assert_series_equal(r1, e1) self.assert_frame_equal(r2, df) def test_set_frame_expand_regular_with_extension(self, data): df = pd.DataFrame({"A": [1] * len(data)}) df["B"] = data expected = pd.DataFrame({"A": [1] * len(data), "B": data}) self.assert_frame_equal(df, expected) def test_set_frame_expand_extension_with_regular(self, data): df = pd.DataFrame({"A": data}) df["B"] = [1] * len(data) expected = pd.DataFrame({"A": data, "B": [1] * len(data)}) self.assert_frame_equal(df, expected) def test_set_frame_overwrite_object(self, data): # https://github.com/pandas-dev/pandas/issues/20555 df = pd.DataFrame({"A": [1] * len(data)}, dtype=object) df["A"] = data assert df.dtypes["A"] == data.dtype def test_merge(self, data, na_value): # GH-20743 df1 = pd.DataFrame({"ext": data[:3], "int1": [1, 2, 3], "key": [0, 1, 2]}) df2 = pd.DataFrame({"int2": [1, 2, 3, 4], "key": [0, 0, 1, 3]}) res = pd.merge(df1, df2) exp = pd.DataFrame( { "int1": [1, 1, 2], "int2": [1, 2, 3], "key": [0, 0, 1], "ext": data._from_sequence( [data[0], data[0], data[1]], dtype=data.dtype ), } ) self.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]]) res = pd.merge(df1, df2, how="outer") exp = pd.DataFrame( { "int1": [1, 1, 2, 3, np.nan], "int2": [1, 2, 3, np.nan, 4], "key": [0, 0, 1, 2, 3], "ext": data._from_sequence( [data[0], data[0], data[1], data[2], na_value], dtype=data.dtype ), } ) self.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]]) def test_merge_on_extension_array(self, data): # GH 23020 a, b = data[:2] key = type(data)._from_sequence([a, b], dtype=data.dtype) df = pd.DataFrame({"key": key, "val": [1, 2]}) result = pd.merge(df, df, on="key") expected = pd.DataFrame({"key": key, "val_x": [1, 2], "val_y": [1, 2]}) self.assert_frame_equal(result, expected) # order result = pd.merge(df.iloc[[1, 0]], df, on="key") expected = expected.iloc[[1, 0]].reset_index(drop=True) self.assert_frame_equal(result, expected) def test_merge_on_extension_array_duplicates(self, data): # GH 23020 a, b = data[:2] key = type(data)._from_sequence([a, b, a], dtype=data.dtype) df1 = pd.DataFrame({"key": key, "val": [1, 2, 3]}) df2 = pd.DataFrame({"key": key, "val": [1, 2, 3]}) result = pd.merge(df1, df2, on="key") expected = pd.DataFrame( { "key": key.take([0, 0, 0, 0, 1]), "val_x": [1, 1, 3, 3, 2], "val_y": [1, 3, 1, 3, 2], } ) self.assert_frame_equal(result, expected) @pytest.mark.parametrize( "columns", [ ["A", "B"], pd.MultiIndex.from_tuples( [("A", "a"), ("A", "b")], names=["outer", "inner"] ), ], ) def test_stack(self, data, columns): df = pd.DataFrame({"A": data[:5], "B": data[:5]}) df.columns = columns result = df.stack() expected = df.astype(object).stack() # we need a second astype(object), in case the constructor inferred # object -> specialized, as is done for period. expected = expected.astype(object) if isinstance(expected, pd.Series): assert result.dtype == df.iloc[:, 0].dtype else: assert all(result.dtypes == df.iloc[:, 0].dtype) result = result.astype(object) self.assert_equal(result, expected) @pytest.mark.parametrize( "index", [ # Two levels, uniform. pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]), # non-uniform pd.MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "b")]), # three levels, non-uniform pd.MultiIndex.from_product([("A", "B"), ("a", "b", "c"), (0, 1, 2)]), pd.MultiIndex.from_tuples( [ ("A", "a", 1), ("A", "b", 0), ("A", "a", 0), ("B", "a", 0), ("B", "c", 1), ] ), ], ) @pytest.mark.parametrize("obj", ["series", "frame"]) def test_unstack(self, data, index, obj): data = data[: len(index)] if obj == "series": ser = pd.Series(data, index=index) else: ser = pd.DataFrame({"A": data, "B": data}, index=index) n = index.nlevels levels = list(range(n)) # [0, 1, 2] # [(0,), (1,), (2,), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] combinations = itertools.chain.from_iterable( itertools.permutations(levels, i) for i in range(1, n) ) for level in combinations: result = ser.unstack(level=level) assert all( isinstance(result[col].array, type(data)) for col in result.columns ) expected = ser.astype(object).unstack(level=level) result = result.astype(object) self.assert_frame_equal(result, expected) def test_ravel(self, data): # as long as EA is 1D-only, ravel is a no-op result = data.ravel() assert type(result) == type(data) # Check that we have a view, not a copy result[0] = result[1] assert data[0] == data[1] def test_transpose(self, data): df = pd.DataFrame({"A": data[:4], "B": data[:4]}, index=["a", "b", "c", "d"]) result = df.T expected = pd.DataFrame( { "a": type(data)._from_sequence([data[0]] * 2, dtype=data.dtype), "b": type(data)._from_sequence([data[1]] * 2, dtype=data.dtype), "c": type(data)._from_sequence([data[2]] * 2, dtype=data.dtype), "d": type(data)._from_sequence([data[3]] * 2, dtype=data.dtype), }, index=["A", "B"], ) self.assert_frame_equal(result, expected) self.assert_frame_equal(np.transpose(np.transpose(df)), df) self.assert_frame_equal(np.transpose(np.transpose(df[["A"]])), df[["A"]])