"""Test extension array for storing nested data in a pandas container. The JSONArray stores lists of dictionaries. The storage mechanism is a list, not an ndarray. Note: We currently store lists of UserDicts. Pandas has a few places internally that specifically check for dicts, and does non-scalar things in that case. We *want* the dictionaries to be treated as scalars, so we hack around pandas by using UserDicts. """ from collections import UserDict, abc import itertools import numbers import random import string import sys import numpy as np import pandas as pd from pandas.api.extensions import ExtensionArray, ExtensionDtype class JSONDtype(ExtensionDtype): type = abc.Mapping name = "json" na_value = UserDict() @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype. Returns ------- type """ return JSONArray @classmethod def construct_from_string(cls, string): if string == cls.name: return cls() else: raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'") class JSONArray(ExtensionArray): dtype = JSONDtype() __array_priority__ = 1000 def __init__(self, values, dtype=None, copy=False): for val in values: if not isinstance(val, self.dtype.type): raise TypeError("All values must be of type " + str(self.dtype.type)) self.data = values # Some aliases for common attribute names to ensure pandas supports # these self._items = self._data = self.data # those aliases are currently not working due to assumptions # in internal code (GH-20735) # self._values = self.values = self.data @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return cls(scalars) @classmethod def _from_factorized(cls, values, original): return cls([UserDict(x) for x in values if x != ()]) def __getitem__(self, item): if isinstance(item, numbers.Integral): return self.data[item] elif isinstance(item, slice) and item == slice(None): # Make sure we get a view return type(self)(self.data) elif isinstance(item, slice): # slice return type(self)(self.data[item]) else: item = pd.api.indexers.check_array_indexer(self, item) if pd.api.types.is_bool_dtype(item.dtype): return self._from_sequence([x for x, m in zip(self, item) if m]) # integer return type(self)([self.data[i] for i in item]) def __setitem__(self, key, value): if isinstance(key, numbers.Integral): self.data[key] = value else: if not isinstance(value, (type(self), abc.Sequence)): # broadcast value value = itertools.cycle([value]) if isinstance(key, np.ndarray) and key.dtype == "bool": # masking for i, (k, v) in enumerate(zip(key, value)): if k: assert isinstance(v, self.dtype.type) self.data[i] = v else: for k, v in zip(key, value): assert isinstance(v, self.dtype.type) self.data[k] = v def __len__(self) -> int: return len(self.data) def __array__(self, dtype=None): if dtype is None: dtype = object return np.asarray(self.data, dtype=dtype) @property def nbytes(self) -> int: return sys.getsizeof(self.data) def isna(self): return np.array([x == self.dtype.na_value for x in self.data], dtype=bool) def take(self, indexer, allow_fill=False, fill_value=None): # re-implement here, since NumPy has trouble setting # sized objects like UserDicts into scalar slots of # an ndarary. indexer = np.asarray(indexer) msg = ( "Index is out of bounds or cannot do a " "non-empty take from an empty array." ) if allow_fill: if fill_value is None: fill_value = self.dtype.na_value # bounds check if (indexer < -1).any(): raise ValueError try: output = [ self.data[loc] if loc != -1 else fill_value for loc in indexer ] except IndexError: raise IndexError(msg) else: try: output = [self.data[loc] for loc in indexer] except IndexError: raise IndexError(msg) return self._from_sequence(output) def copy(self): return type(self)(self.data[:]) def astype(self, dtype, copy=True): # NumPy has issues when all the dicts are the same length. # np.array([UserDict(...), UserDict(...)]) fails, # but np.array([{...}, {...}]) works, so cast. # needed to add this check for the Series constructor if isinstance(dtype, type(self.dtype)) and dtype == self.dtype: if copy: return self.copy() return self return np.array([dict(x) for x in self], dtype=dtype, copy=copy) def unique(self): # Parent method doesn't work since np.array will try to infer # a 2-dim object. return type(self)( [dict(x) for x in list({tuple(d.items()) for d in self.data})] ) @classmethod def _concat_same_type(cls, to_concat): data = list(itertools.chain.from_iterable([x.data for x in to_concat])) return cls(data) def _values_for_factorize(self): frozen = self._values_for_argsort() if len(frozen) == 0: # _factorize_array expects 1-d array, this is a len-0 2-d array. frozen = frozen.ravel() return frozen, () def _values_for_argsort(self): # Disable NumPy's shape inference by including an empty tuple... # If all the elements of self are the same size P, NumPy will # cast them to an (N, P) array, instead of an (N,) array of tuples. frozen = [()] + [tuple(x.items()) for x in self] return np.array(frozen, dtype=object)[1:] def make_data(): # TODO: Use a regular dict. See _NDFrameIndexer._setitem_with_indexer return [ UserDict( [ (random.choice(string.ascii_letters), random.randint(0, 100)) for _ in range(random.randint(0, 10)) ] ) for _ in range(100) ]