""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ import numpy as np import pytest from pandas.core.dtypes.common import is_extension_array_dtype import pandas as pd import pandas._testing as tm from pandas.core.arrays import integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension import base def make_data(): return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_for_twos(dtype): return integer_array(np.ones(100) * 2, dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([pd.NA, 1], dtype=dtype) @pytest.fixture def data_for_sorting(dtype): return integer_array([1, 2, 0], dtype=dtype) @pytest.fixture def data_missing_for_sorting(dtype): return integer_array([1, pd.NA, 0], dtype=dtype) @pytest.fixture def na_cmp(): # we are pd.NA return lambda x, y: x is pd.NA and y is pd.NA @pytest.fixture def na_value(): return pd.NA @pytest.fixture def data_for_grouping(dtype): b = 1 a = 0 c = 2 na = pd.NA return integer_array([b, b, na, na, a, a, b, c], dtype=dtype) class TestDtype(base.BaseDtypeTests): @pytest.mark.skip(reason="using multiple dtypes") def test_is_dtype_unboxes_dtype(self): # we have multiple dtypes, so skip pass class TestArithmeticOps(base.BaseArithmeticOpsTests): def check_opname(self, s, op_name, other, exc=None): # overwriting to indicate ops don't raise an error super().check_opname(s, op_name, other, exc=None) def _check_op(self, s, op, other, op_name, exc=NotImplementedError): if exc is None: if s.dtype.is_unsigned_integer and (op_name == "__rsub__"): # TODO see https://github.com/pandas-dev/pandas/issues/22023 pytest.skip("unsigned subtraction gives negative values") if ( hasattr(other, "dtype") and not is_extension_array_dtype(other.dtype) and pd.api.types.is_integer_dtype(other.dtype) ): # other is np.int64 and would therefore always result in # upcasting, so keeping other as same numpy_dtype other = other.astype(s.dtype.numpy_dtype) result = op(s, other) expected = s.combine(other, op) if op_name in ("__rtruediv__", "__truediv__", "__div__"): expected = expected.fillna(np.nan).astype(float) if op_name == "__rtruediv__": # TODO reverse operators result in object dtype result = result.astype(float) elif op_name.startswith("__r"): # TODO reverse operators result in object dtype # see https://github.com/pandas-dev/pandas/issues/22024 expected = expected.astype(s.dtype) result = result.astype(s.dtype) else: # combine method result in 'biggest' (int64) dtype expected = expected.astype(s.dtype) pass if (op_name == "__rpow__") and isinstance(other, pd.Series): # TODO pow on Int arrays gives different result with NA # see https://github.com/pandas-dev/pandas/issues/22022 result = result.fillna(1) self.assert_series_equal(result, expected) else: with pytest.raises(exc): op(s, other) def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) @pytest.mark.skip(reason="intNA does not error on ops") def test_error(self, data, all_arithmetic_operators): # other specific errors tested in the integer array specific tests pass class TestComparisonOps(base.BaseComparisonOpsTests): def _check_op(self, s, op, other, op_name, exc=NotImplementedError): if exc is None: result = op(s, other) # Override to do the astype to boolean expected = s.combine(other, op).astype("boolean") self.assert_series_equal(result, expected) else: with pytest.raises(exc): op(s, other) def check_opname(self, s, op_name, other, exc=None): super().check_opname(s, op_name, other, exc=None) def _compare_other(self, s, data, op_name, other): self.check_opname(s, op_name, other) class TestInterface(base.BaseInterfaceTests): pass class TestConstructors(base.BaseConstructorsTests): pass class TestReshaping(base.BaseReshapingTests): pass # for test_concat_mixed_dtypes test # concat of an Integer and Int coerces to object dtype # TODO(jreback) once integrated this would class TestGetitem(base.BaseGetitemTests): pass class TestSetitem(base.BaseSetitemTests): pass class TestMissing(base.BaseMissingTests): pass class TestMethods(base.BaseMethodsTests): @pytest.mark.skip(reason="uses nullable integer") def test_value_counts(self, all_data, dropna): all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Series(all_data).value_counts(dropna=dropna).sort_index() expected = pd.Series(other).value_counts(dropna=dropna).sort_index() expected.index = expected.index.astype(all_data.dtype) self.assert_series_equal(result, expected) class TestCasting(base.BaseCastingTests): pass class TestGroupby(base.BaseGroupbyTests): pass class TestNumericReduce(base.BaseNumericReduceTests): def check_reduce(self, s, op_name, skipna): # overwrite to ensure pd.NA is tested instead of np.nan # https://github.com/pandas-dev/pandas/issues/30958 result = getattr(s, op_name)(skipna=skipna) expected = getattr(s.astype("float64"), op_name)(skipna=skipna) if np.isnan(expected): expected = pd.NA tm.assert_almost_equal(result, expected) class TestBooleanReduce(base.BaseBooleanReduceTests): pass class TestPrinting(base.BasePrintingTests): pass class TestParsing(base.BaseParsingTests): pass