import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import SparseDtype import pandas._testing as tm from pandas.arrays import SparseArray from pandas.tests.extension import base def make_data(fill_value): if np.isnan(fill_value): data = np.random.uniform(size=100) else: data = np.random.randint(1, 100, size=100) if data[0] == data[1]: data[0] += 1 data[2::3] = fill_value return data @pytest.fixture def dtype(): return SparseDtype() @pytest.fixture(params=[0, np.nan]) def data(request): """Length-100 PeriodArray for semantics test.""" res = SparseArray(make_data(request.param), fill_value=request.param) return res @pytest.fixture def data_for_twos(request): return SparseArray(np.ones(100) * 2) @pytest.fixture(params=[0, np.nan]) def data_missing(request): """Length 2 array with [NA, Valid]""" return SparseArray([np.nan, 1], fill_value=request.param) @pytest.fixture(params=[0, np.nan]) def data_repeated(request): """Return different versions of data for count times""" def gen(count): for _ in range(count): yield SparseArray(make_data(request.param), fill_value=request.param) yield gen @pytest.fixture(params=[0, np.nan]) def data_for_sorting(request): return SparseArray([2, 3, 1], fill_value=request.param) @pytest.fixture(params=[0, np.nan]) def data_missing_for_sorting(request): return SparseArray([2, np.nan, 1], fill_value=request.param) @pytest.fixture def na_value(): return np.nan @pytest.fixture def na_cmp(): return lambda left, right: pd.isna(left) and pd.isna(right) @pytest.fixture(params=[0, np.nan]) def data_for_grouping(request): return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param) class BaseSparseTests: def _check_unsupported(self, data): if data.dtype == SparseDtype(int, 0): pytest.skip("Can't store nan in int array.") @pytest.mark.xfail(reason="SparseArray does not support setitem") def test_ravel(self, data): super().test_ravel(data) class TestDtype(BaseSparseTests, base.BaseDtypeTests): def test_array_type_with_arg(self, data, dtype): assert dtype.construct_array_type() is SparseArray class TestInterface(BaseSparseTests, base.BaseInterfaceTests): def test_no_values_attribute(self, data): pytest.skip("We have values") def test_copy(self, data): # __setitem__ does not work, so we only have a smoke-test data.copy() def test_view(self, data): # __setitem__ does not work, so we only have a smoke-test data.view() class TestConstructors(BaseSparseTests, base.BaseConstructorsTests): pass class TestReshaping(BaseSparseTests, base.BaseReshapingTests): def test_concat_mixed_dtypes(self, data): # https://github.com/pandas-dev/pandas/issues/20762 # This should be the same, aside from concat([sparse, float]) df1 = pd.DataFrame({"A": data[:3]}) df2 = pd.DataFrame({"A": [1, 2, 3]}) df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category") dfs = [df1, df2, df3] # dataframes result = pd.concat(dfs) expected = pd.concat( [x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs] ) self.assert_frame_equal(result, expected) def test_concat_columns(self, data, na_value): self._check_unsupported(data) super().test_concat_columns(data, na_value) def test_concat_extension_arrays_copy_false(self, data, na_value): self._check_unsupported(data) super().test_concat_extension_arrays_copy_false(data, na_value) def test_align(self, data, na_value): self._check_unsupported(data) super().test_align(data, na_value) def test_align_frame(self, data, na_value): self._check_unsupported(data) super().test_align_frame(data, na_value) def test_align_series_frame(self, data, na_value): self._check_unsupported(data) super().test_align_series_frame(data, na_value) def test_merge(self, data, na_value): self._check_unsupported(data) super().test_merge(data, na_value) class TestGetitem(BaseSparseTests, base.BaseGetitemTests): def test_get(self, data): s = pd.Series(data, index=[2 * i for i in range(len(data))]) if np.isnan(s.values.fill_value): assert np.isnan(s.get(4)) and np.isnan(s.iloc[2]) else: assert s.get(4) == s.iloc[2] assert s.get(2) == s.iloc[1] def test_reindex(self, data, na_value): self._check_unsupported(data) super().test_reindex(data, na_value) # Skipping TestSetitem, since we don't implement it. class TestMissing(BaseSparseTests, base.BaseMissingTests): def test_isna(self, data_missing): expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value)) expected = SparseArray([True, False], dtype=expected_dtype) result = pd.isna(data_missing) self.assert_equal(result, expected) result = pd.Series(data_missing).isna() expected = pd.Series(expected) self.assert_series_equal(result, expected) # GH 21189 result = pd.Series(data_missing).drop([0, 1]).isna() expected = pd.Series([], dtype=expected_dtype) self.assert_series_equal(result, expected) def test_fillna_limit_pad(self, data_missing): with tm.assert_produces_warning(PerformanceWarning): super().test_fillna_limit_pad(data_missing) def test_fillna_limit_backfill(self, data_missing): with tm.assert_produces_warning(PerformanceWarning): super().test_fillna_limit_backfill(data_missing) def test_fillna_series_method(self, data_missing): with tm.assert_produces_warning(PerformanceWarning): super().test_fillna_limit_backfill(data_missing) @pytest.mark.skip(reason="Unsupported") def test_fillna_series(self): # this one looks doable. pass def test_fillna_frame(self, data_missing): # Have to override to specify that fill_value will change. fill_value = data_missing[1] result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value) if pd.isna(data_missing.fill_value): dtype = SparseDtype(data_missing.dtype, fill_value) else: dtype = data_missing.dtype expected = pd.DataFrame( { "A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype), "B": [1, 2], } ) self.assert_frame_equal(result, expected) class TestMethods(BaseSparseTests, base.BaseMethodsTests): def test_combine_le(self, data_repeated): # We return a Series[SparseArray].__le__ returns a # Series[Sparse[bool]] # rather than Series[bool] orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 <= x2) expected = pd.Series( SparseArray( [a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))], fill_value=False, ) ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 <= x2) expected = pd.Series( SparseArray([a <= val for a in list(orig_data1)], fill_value=False) ) self.assert_series_equal(result, expected) def test_fillna_copy_frame(self, data_missing): arr = data_missing.take([1, 1]) df = pd.DataFrame({"A": arr}) filled_val = df.iloc[0, 0] result = df.fillna(filled_val) assert df.values.base is not result.values.base assert df.A._values.to_dense() is arr.to_dense() def test_fillna_copy_series(self, data_missing): arr = data_missing.take([1, 1]) ser = pd.Series(arr) filled_val = ser[0] result = ser.fillna(filled_val) assert ser._values is not result._values assert ser._values.to_dense() is arr.to_dense() @pytest.mark.skip(reason="Not Applicable") def test_fillna_length_mismatch(self, data_missing): pass def test_where_series(self, data, na_value): assert data[0] != data[1] cls = type(data) a, b = data[:2] ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype)) cond = np.array([True, True, False, False]) result = ser.where(cond) new_dtype = SparseDtype("float", 0.0) expected = pd.Series( cls._from_sequence([a, a, na_value, na_value], dtype=new_dtype) ) self.assert_series_equal(result, expected) other = cls._from_sequence([a, b, a, b], dtype=data.dtype) cond = np.array([True, False, True, True]) result = ser.where(cond, other) expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype)) self.assert_series_equal(result, expected) def test_combine_first(self, data): if data.dtype.subtype == "int": # Right now this is upcasted to float, just like combine_first # for Series[int] pytest.skip("TODO(SparseArray.__setitem__ will preserve dtype.") super().test_combine_first(data) def test_searchsorted(self, data_for_sorting, as_series): with tm.assert_produces_warning(PerformanceWarning): super().test_searchsorted(data_for_sorting, as_series) class TestCasting(BaseSparseTests, base.BaseCastingTests): pass class TestArithmeticOps(BaseSparseTests, base.BaseArithmeticOpsTests): series_scalar_exc = None frame_scalar_exc = None divmod_exc = None series_array_exc = None def _skip_if_different_combine(self, data): if data.fill_value == 0: # arith ops call on dtype.fill_value so that the sparsity # is maintained. Combine can't be called on a dtype in # general, so we can't make the expected. This is tested elsewhere raise pytest.skip("Incorrected expected from Series.combine") def test_error(self, data, all_arithmetic_operators): pass def test_arith_series_with_scalar(self, data, all_arithmetic_operators): self._skip_if_different_combine(data) super().test_arith_series_with_scalar(data, all_arithmetic_operators) def test_arith_series_with_array(self, data, all_arithmetic_operators): self._skip_if_different_combine(data) super().test_arith_series_with_array(data, all_arithmetic_operators) class TestComparisonOps(BaseSparseTests, base.BaseComparisonOpsTests): def _compare_other(self, s, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) # hard to test the fill value, since we don't know what expected # is in general. # Rely on tests in `tests/sparse` to validate that. assert isinstance(result.dtype, SparseDtype) assert result.dtype.subtype == np.dtype("bool") with np.errstate(all="ignore"): expected = pd.Series( SparseArray( op(np.asarray(data), np.asarray(other)), fill_value=result.values.fill_value, ) ) tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) tm.assert_series_equal(result, expected) class TestPrinting(BaseSparseTests, base.BasePrintingTests): @pytest.mark.xfail(reason="Different repr", strict=True) def test_array_repr(self, data, size): super().test_array_repr(data, size) class TestParsing(BaseSparseTests, base.BaseParsingTests): @pytest.mark.parametrize("engine", ["c", "python"]) def test_EA_types(self, engine, data): expected_msg = r".*must implement _from_sequence_of_strings.*" with pytest.raises(NotImplementedError, match=expected_msg): super().test_EA_types(engine, data)