import numpy as np import pytest import pandas as pd from pandas import Index, MultiIndex @pytest.fixture def idx(): # a MultiIndex used to test the general functionality of the # general functionality of this object major_axis = Index(["foo", "bar", "baz", "qux"]) minor_axis = Index(["one", "two"]) major_codes = np.array([0, 0, 1, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 0, 1]) index_names = ["first", "second"] mi = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes], names=index_names, verify_integrity=False, ) return mi @pytest.fixture def idx_dup(): # compare tests/indexes/multi/conftest.py major_axis = Index(["foo", "bar", "baz", "qux"]) minor_axis = Index(["one", "two"]) major_codes = np.array([0, 0, 1, 0, 1, 1]) minor_codes = np.array([0, 1, 0, 1, 0, 1]) index_names = ["first", "second"] mi = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes], names=index_names, verify_integrity=False, ) return mi @pytest.fixture def index_names(): # names that match those in the idx fixture for testing equality of # names assigned to the idx return ["first", "second"] @pytest.fixture def holder(): # the MultiIndex constructor used to base compatibility with pickle return MultiIndex @pytest.fixture def compat_props(): # a MultiIndex must have these properties associated with it return ["shape", "ndim", "size"] @pytest.fixture def narrow_multi_index(): """ Return a MultiIndex that is narrower than the display (<80 characters). """ n = 1000 ci = pd.CategoricalIndex(list("a" * n) + (["abc"] * n)) dti = pd.date_range("2000-01-01", freq="s", periods=n * 2) return pd.MultiIndex.from_arrays([ci, ci.codes + 9, dti], names=["a", "b", "dti"]) @pytest.fixture def wide_multi_index(): """ Return a MultiIndex that is wider than the display (>80 characters). """ n = 1000 ci = pd.CategoricalIndex(list("a" * n) + (["abc"] * n)) dti = pd.date_range("2000-01-01", freq="s", periods=n * 2) levels = [ci, ci.codes + 9, dti, dti, dti] names = ["a", "b", "dti_1", "dti_2", "dti_3"] return pd.MultiIndex.from_arrays(levels, names=names)