# coding: utf-8 """ Test cases for DataFrame.plot """ from datetime import date, datetime import itertools import string import warnings import numpy as np from numpy.random import rand, randn import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.api import is_list_like import pandas as pd from pandas import DataFrame, MultiIndex, PeriodIndex, Series, bdate_range, date_range import pandas._testing as tm from pandas.core.arrays import integer_array from pandas.tests.plotting.common import TestPlotBase, _check_plot_works from pandas.io.formats.printing import pprint_thing import pandas.plotting as plotting @td.skip_if_no_mpl class TestDataFramePlots(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame( { "A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform(size=20), } ) def _assert_ytickslabels_visibility(self, axes, expected): for ax, exp in zip(axes, expected): self._check_visible(ax.get_yticklabels(), visible=exp) def _assert_xtickslabels_visibility(self, axes, expected): for ax, exp in zip(axes, expected): self._check_visible(ax.get_xticklabels(), visible=exp) @pytest.mark.slow def test_plot(self): from pandas.plotting._matplotlib.compat import _mpl_ge_3_1_0 df = self.tdf _check_plot_works(df.plot, grid=False) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, subplots=True) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, subplots=True, layout=(-1, 2)) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, subplots=True, use_index=False) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) df = DataFrame({"x": [1, 2], "y": [3, 4]}) if _mpl_ge_3_1_0(): msg = "'Line2D' object has no property 'blarg'" else: msg = "Unknown property blarg" with pytest.raises(AttributeError, match=msg): df.plot.line(blarg=True) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, use_index=True) _check_plot_works(df.plot, sort_columns=False) _check_plot_works(df.plot, yticks=[1, 5, 10]) _check_plot_works(df.plot, xticks=[1, 5, 10]) _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100)) with tm.assert_produces_warning(UserWarning): _check_plot_works(df.plot, subplots=True, title="blah") # We have to redo it here because _check_plot_works does two plots, # once without an ax kwarg and once with an ax kwarg and the new sharex # behaviour does not remove the visibility of the latter axis (as ax is # present). see: https://github.com/pandas-dev/pandas/issues/9737 axes = df.plot(subplots=True, title="blah") self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) # axes[0].figure.savefig("test.png") for ax in axes[:2]: self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible([ax.xaxis.get_label()], visible=False) for ax in [axes[2]]: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible([ax.xaxis.get_label()]) self._check_ticks_props(ax, xrot=0) _check_plot_works(df.plot, title="blah") tuples = zip(string.ascii_letters[:10], range(10)) df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples)) _check_plot_works(df.plot, use_index=True) # unicode index = MultiIndex.from_tuples( [ ("\u03b1", 0), ("\u03b1", 1), ("\u03b2", 2), ("\u03b2", 3), ("\u03b3", 4), ("\u03b3", 5), ("\u03b4", 6), ("\u03b4", 7), ], names=["i0", "i1"], ) columns = MultiIndex.from_tuples( [("bar", "\u0394"), ("bar", "\u0395")], names=["c0", "c1"] ) df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index) _check_plot_works(df.plot, title="\u03A3") # GH 6951 # Test with single column df = DataFrame({"x": np.random.rand(10)}) axes = _check_plot_works(df.plot.bar, subplots=True) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) axes = _check_plot_works(df.plot.bar, subplots=True, layout=(-1, 1)) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) # When ax is supplied and required number of axes is 1, # passed ax should be used: fig, ax = self.plt.subplots() axes = df.plot.bar(subplots=True, ax=ax) assert len(axes) == 1 result = ax.axes assert result is axes[0] def test_integer_array_plot(self): # GH 25587 arr = integer_array([1, 2, 3, 4], dtype="UInt32") s = Series(arr) _check_plot_works(s.plot.line) _check_plot_works(s.plot.bar) _check_plot_works(s.plot.hist) _check_plot_works(s.plot.pie) df = DataFrame({"x": arr, "y": arr}) _check_plot_works(df.plot.line) _check_plot_works(df.plot.bar) _check_plot_works(df.plot.hist) _check_plot_works(df.plot.pie, y="y") _check_plot_works(df.plot.scatter, x="x", y="y") _check_plot_works(df.plot.hexbin, x="x", y="y") def test_mpl2_color_cycle_str(self): # GH 15516 colors = ["C" + str(x) for x in range(10)] df = DataFrame(randn(10, 3), columns=["a", "b", "c"]) for c in colors: _check_plot_works(df.plot, color=c) def test_color_single_series_list(self): # GH 3486 df = DataFrame({"A": [1, 2, 3]}) _check_plot_works(df.plot, color=["red"]) def test_rgb_tuple_color(self): # GH 16695 df = DataFrame({"x": [1, 2], "y": [3, 4]}) _check_plot_works(df.plot, x="x", y="y", color=(1, 0, 0)) _check_plot_works(df.plot, x="x", y="y", color=(1, 0, 0, 0.5)) def test_color_empty_string(self): df = DataFrame(randn(10, 2)) with pytest.raises(ValueError): df.plot(color="") def test_color_and_style_arguments(self): df = DataFrame({"x": [1, 2], "y": [3, 4]}) # passing both 'color' and 'style' arguments should be allowed # if there is no color symbol in the style strings: ax = df.plot(color=["red", "black"], style=["-", "--"]) # check that the linestyles are correctly set: linestyle = [line.get_linestyle() for line in ax.lines] assert linestyle == ["-", "--"] # check that the colors are correctly set: color = [line.get_color() for line in ax.lines] assert color == ["red", "black"] # passing both 'color' and 'style' arguments should not be allowed # if there is a color symbol in the style strings: with pytest.raises(ValueError): df.plot(color=["red", "black"], style=["k-", "r--"]) def test_nonnumeric_exclude(self): df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}) ax = df.plot() assert len(ax.get_lines()) == 1 # B was plotted @pytest.mark.slow def test_implicit_label(self): df = DataFrame(randn(10, 3), columns=["a", "b", "c"]) ax = df.plot(x="a", y="b") self._check_text_labels(ax.xaxis.get_label(), "a") @pytest.mark.slow def test_donot_overwrite_index_name(self): # GH 8494 df = DataFrame(randn(2, 2), columns=["a", "b"]) df.index.name = "NAME" df.plot(y="b", label="LABEL") assert df.index.name == "NAME" @pytest.mark.slow def test_plot_xy(self): # columns.inferred_type == 'string' df = self.tdf self._check_data(df.plot(x=0, y=1), df.set_index("A")["B"].plot()) self._check_data(df.plot(x=0), df.set_index("A").plot()) self._check_data(df.plot(y=0), df.B.plot()) self._check_data(df.plot(x="A", y="B"), df.set_index("A").B.plot()) self._check_data(df.plot(x="A"), df.set_index("A").plot()) self._check_data(df.plot(y="B"), df.B.plot()) # columns.inferred_type == 'integer' df.columns = np.arange(1, len(df.columns) + 1) self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot()) self._check_data(df.plot(x=1), df.set_index(1).plot()) self._check_data(df.plot(y=1), df[1].plot()) # figsize and title ax = df.plot(x=1, y=2, title="Test", figsize=(16, 8)) self._check_text_labels(ax.title, "Test") self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16.0, 8.0)) # columns.inferred_type == 'mixed' # TODO add MultiIndex test @pytest.mark.slow @pytest.mark.parametrize( "input_log, expected_log", [(True, "log"), ("sym", "symlog")] ) def test_logscales(self, input_log, expected_log): df = DataFrame({"a": np.arange(100)}, index=np.arange(100)) ax = df.plot(logy=input_log) self._check_ax_scales(ax, yaxis=expected_log) assert ax.get_yscale() == expected_log ax = df.plot(logx=input_log) self._check_ax_scales(ax, xaxis=expected_log) assert ax.get_xscale() == expected_log ax = df.plot(loglog=input_log) self._check_ax_scales(ax, xaxis=expected_log, yaxis=expected_log) assert ax.get_xscale() == expected_log assert ax.get_yscale() == expected_log @pytest.mark.parametrize("input_param", ["logx", "logy", "loglog"]) def test_invalid_logscale(self, input_param): # GH: 24867 df = DataFrame({"a": np.arange(100)}, index=np.arange(100)) msg = "Boolean, None and 'sym' are valid options, 'sm' is given." with pytest.raises(ValueError, match=msg): df.plot(**{input_param: "sm"}) @pytest.mark.slow def test_xcompat(self): import pandas as pd df = self.tdf ax = df.plot(x_compat=True) lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() pd.plotting.plot_params["xaxis.compat"] = True ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() pd.plotting.plot_params["x_compat"] = False ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex) tm.close() # useful if you're plotting a bunch together with pd.plotting.plot_params.use("x_compat", True): ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() ax = df.plot() lines = ax.get_lines() assert not isinstance(lines[0].get_xdata(), PeriodIndex) assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex) def test_period_compat(self): # GH 9012 # period-array conversions df = DataFrame( np.random.rand(21, 2), index=bdate_range(datetime(2000, 1, 1), datetime(2000, 1, 31)), columns=["a", "b"], ) df.plot() self.plt.axhline(y=0) tm.close() def test_unsorted_index(self): df = DataFrame( {"y": np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64 ) ax = df.plot() lines = ax.get_lines()[0] rs = lines.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name="y") tm.assert_series_equal(rs, df.y, check_index_type=False) tm.close() df.index = pd.Index(np.arange(99, -1, -1), dtype=np.float64) ax = df.plot() lines = ax.get_lines()[0] rs = lines.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name="y") tm.assert_series_equal(rs, df.y) def test_unsorted_index_lims(self): df = DataFrame({"y": [0.0, 1.0, 2.0, 3.0]}, index=[1.0, 0.0, 3.0, 2.0]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame( {"y": [0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0]}, index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0], ) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame({"y": [0.0, 1.0, 2.0, 3.0], "z": [91.0, 90.0, 93.0, 92.0]}) ax = df.plot(x="z", y="y") xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) @pytest.mark.slow def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) for kind in ["bar", "barh", "line", "area"]: axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) assert axes.shape == (3,) for ax, column in zip(axes, df.columns): self._check_legend_labels(ax, labels=[pprint_thing(column)]) for ax in axes[:-2]: self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) if not (kind == "bar" and self.mpl_ge_3_1_0): # change https://github.com/pandas-dev/pandas/issues/26714 self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) axes = df.plot(kind=kind, subplots=True, sharex=False) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) axes = df.plot(kind=kind, subplots=True, legend=False) for ax in axes: assert ax.get_legend() is None def test_groupby_boxplot_sharey(self): # https://github.com/pandas-dev/pandas/issues/20968 # sharey can now be switched check whether the right # pair of axes is turned on or off df = DataFrame( { "a": [-1.43, -0.15, -3.70, -1.43, -0.14], "b": [0.56, 0.84, 0.29, 0.56, 0.85], "c": [0, 1, 2, 3, 1], }, index=[0, 1, 2, 3, 4], ) # behavior without keyword axes = df.groupby("c").boxplot() expected = [True, False, True, False] self._assert_ytickslabels_visibility(axes, expected) # set sharey=True should be identical axes = df.groupby("c").boxplot(sharey=True) expected = [True, False, True, False] self._assert_ytickslabels_visibility(axes, expected) # sharey=False, all yticklabels should be visible axes = df.groupby("c").boxplot(sharey=False) expected = [True, True, True, True] self._assert_ytickslabels_visibility(axes, expected) def test_groupby_boxplot_sharex(self): # https://github.com/pandas-dev/pandas/issues/20968 # sharex can now be switched check whether the right # pair of axes is turned on or off df = DataFrame( { "a": [-1.43, -0.15, -3.70, -1.43, -0.14], "b": [0.56, 0.84, 0.29, 0.56, 0.85], "c": [0, 1, 2, 3, 1], }, index=[0, 1, 2, 3, 4], ) # behavior without keyword axes = df.groupby("c").boxplot() expected = [True, True, True, True] self._assert_xtickslabels_visibility(axes, expected) # set sharex=False should be identical axes = df.groupby("c").boxplot(sharex=False) expected = [True, True, True, True] self._assert_xtickslabels_visibility(axes, expected) # sharex=True, yticklabels should be visible # only for bottom plots axes = df.groupby("c").boxplot(sharex=True) expected = [False, False, True, True] self._assert_xtickslabels_visibility(axes, expected) @pytest.mark.slow def test_subplots_timeseries(self): idx = date_range(start="2014-07-01", freq="M", periods=10) df = DataFrame(np.random.rand(10, 3), index=idx) for kind in ["line", "area"]: axes = df.plot(kind=kind, subplots=True, sharex=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) for ax in axes[:-2]: # GH 7801 self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) self._check_ticks_props(axes, xrot=0) axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) self._check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7) def test_subplots_timeseries_y_axis(self): # GH16953 data = { "numeric": np.array([1, 2, 5]), "timedelta": [ pd.Timedelta(-10, unit="s"), pd.Timedelta(10, unit="m"), pd.Timedelta(10, unit="h"), ], "datetime_no_tz": [ pd.to_datetime("2017-08-01 00:00:00"), pd.to_datetime("2017-08-01 02:00:00"), pd.to_datetime("2017-08-02 00:00:00"), ], "datetime_all_tz": [ pd.to_datetime("2017-08-01 00:00:00", utc=True), pd.to_datetime("2017-08-01 02:00:00", utc=True), pd.to_datetime("2017-08-02 00:00:00", utc=True), ], "text": ["This", "should", "fail"], } testdata = DataFrame(data) ax_numeric = testdata.plot(y="numeric") assert ( ax_numeric.get_lines()[0].get_data()[1] == testdata["numeric"].values ).all() ax_timedelta = testdata.plot(y="timedelta") assert ( ax_timedelta.get_lines()[0].get_data()[1] == testdata["timedelta"].values ).all() ax_datetime_no_tz = testdata.plot(y="datetime_no_tz") assert ( ax_datetime_no_tz.get_lines()[0].get_data()[1] == testdata["datetime_no_tz"].values ).all() ax_datetime_all_tz = testdata.plot(y="datetime_all_tz") assert ( ax_datetime_all_tz.get_lines()[0].get_data()[1] == testdata["datetime_all_tz"].values ).all() msg = "no numeric data to plot" with pytest.raises(TypeError, match=msg): testdata.plot(y="text") @pytest.mark.xfail(reason="not support for period, categorical, datetime_mixed_tz") def test_subplots_timeseries_y_axis_not_supported(self): """ This test will fail for: period: since period isn't yet implemented in ``select_dtypes`` and because it will need a custom value converter + tick formatter (as was done for x-axis plots) categorical: because it will need a custom value converter + tick formatter (also doesn't work for x-axis, as of now) datetime_mixed_tz: because of the way how pandas handles ``Series`` of ``datetime`` objects with different timezone, generally converting ``datetime`` objects in a tz-aware form could help with this problem """ data = { "numeric": np.array([1, 2, 5]), "period": [ pd.Period("2017-08-01 00:00:00", freq="H"), pd.Period("2017-08-01 02:00", freq="H"), pd.Period("2017-08-02 00:00:00", freq="H"), ], "categorical": pd.Categorical( ["c", "b", "a"], categories=["a", "b", "c"], ordered=False ), "datetime_mixed_tz": [ pd.to_datetime("2017-08-01 00:00:00", utc=True), pd.to_datetime("2017-08-01 02:00:00"), pd.to_datetime("2017-08-02 00:00:00"), ], } testdata = pd.DataFrame(data) ax_period = testdata.plot(x="numeric", y="period") assert ( ax_period.get_lines()[0].get_data()[1] == testdata["period"].values ).all() ax_categorical = testdata.plot(x="numeric", y="categorical") assert ( ax_categorical.get_lines()[0].get_data()[1] == testdata["categorical"].values ).all() ax_datetime_mixed_tz = testdata.plot(x="numeric", y="datetime_mixed_tz") assert ( ax_datetime_mixed_tz.get_lines()[0].get_data()[1] == testdata["datetime_mixed_tz"].values ).all() @pytest.mark.slow def test_subplots_layout(self): # GH 6667 df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(-1, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(2, -1)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert axes.shape == (2, 2) axes = df.plot(subplots=True, layout=(1, 4)) self._check_axes_shape(axes, axes_num=3, layout=(1, 4)) assert axes.shape == (1, 4) axes = df.plot(subplots=True, layout=(-1, 4)) self._check_axes_shape(axes, axes_num=3, layout=(1, 4)) assert axes.shape == (1, 4) axes = df.plot(subplots=True, layout=(4, -1)) self._check_axes_shape(axes, axes_num=3, layout=(4, 1)) assert axes.shape == (4, 1) with pytest.raises(ValueError): df.plot(subplots=True, layout=(1, 1)) with pytest.raises(ValueError): df.plot(subplots=True, layout=(-1, -1)) # single column df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) assert axes.shape == (1,) axes = df.plot(subplots=True, layout=(3, 3)) self._check_axes_shape(axes, axes_num=1, layout=(3, 3)) assert axes.shape == (3, 3) @pytest.mark.slow def test_subplots_warnings(self): # GH 9464 with tm.assert_produces_warning(None): df = DataFrame(np.random.randn(100, 4)) df.plot(subplots=True, layout=(3, 2)) df = DataFrame( np.random.randn(100, 4), index=date_range("1/1/2000", periods=100) ) df.plot(subplots=True, layout=(3, 2)) @pytest.mark.slow def test_subplots_multiple_axes(self): # GH 5353, 6970, GH 7069 fig, axes = self.plt.subplots(2, 3) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) returned = df.plot(subplots=True, ax=axes[0], sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) assert returned.shape == (3,) assert returned[0].figure is fig # draw on second row returned = df.plot(subplots=True, ax=axes[1], sharex=False, sharey=False) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) assert returned.shape == (3,) assert returned[0].figure is fig self._check_axes_shape(axes, axes_num=6, layout=(2, 3)) tm.close() with pytest.raises(ValueError): fig, axes = self.plt.subplots(2, 3) # pass different number of axes from required df.plot(subplots=True, ax=axes) # pass 2-dim axes and invalid layout # invalid lauout should not affect to input and return value # (show warning is tested in # TestDataFrameGroupByPlots.test_grouped_box_multiple_axes fig, axes = self.plt.subplots(2, 2) with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) df = DataFrame(np.random.rand(10, 4), index=list(string.ascii_letters[:10])) returned = df.plot( subplots=True, ax=axes, layout=(2, 1), sharex=False, sharey=False ) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4,) returned = df.plot( subplots=True, ax=axes, layout=(2, -1), sharex=False, sharey=False ) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4,) returned = df.plot( subplots=True, ax=axes, layout=(-1, 2), sharex=False, sharey=False ) self._check_axes_shape(returned, axes_num=4, layout=(2, 2)) assert returned.shape == (4,) # single column fig, axes = self.plt.subplots(1, 1) df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) assert axes.shape == (1,) def test_subplots_ts_share_axes(self): # GH 3964 fig, axes = self.plt.subplots(3, 3, sharex=True, sharey=True) self.plt.subplots_adjust(left=0.05, right=0.95, hspace=0.3, wspace=0.3) df = DataFrame( np.random.randn(10, 9), index=date_range(start="2014-07-01", freq="M", periods=10), ) for i, ax in enumerate(axes.ravel()): df[i].plot(ax=ax, fontsize=5) # Rows other than bottom should not be visible for ax in axes[0:-1].ravel(): self._check_visible(ax.get_xticklabels(), visible=False) # Bottom row should be visible for ax in axes[-1].ravel(): self._check_visible(ax.get_xticklabels(), visible=True) # First column should be visible for ax in axes[[0, 1, 2], [0]].ravel(): self._check_visible(ax.get_yticklabels(), visible=True) # Other columns should not be visible for ax in axes[[0, 1, 2], [1]].ravel(): self._check_visible(ax.get_yticklabels(), visible=False) for ax in axes[[0, 1, 2], [2]].ravel(): self._check_visible(ax.get_yticklabels(), visible=False) def test_subplots_sharex_axes_existing_axes(self): # GH 9158 d = {"A": [1.0, 2.0, 3.0, 4.0], "B": [4.0, 3.0, 2.0, 1.0], "C": [5, 1, 3, 4]} df = DataFrame(d, index=date_range("2014 10 11", "2014 10 14")) axes = df[["A", "B"]].plot(subplots=True) df["C"].plot(ax=axes[0], secondary_y=True) self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) for ax in axes.ravel(): self._check_visible(ax.get_yticklabels(), visible=True) @pytest.mark.slow def test_subplots_dup_columns(self): # GH 10962 df = DataFrame(np.random.rand(5, 5), columns=list("aaaaa")) axes = df.plot(subplots=True) for ax in axes: self._check_legend_labels(ax, labels=["a"]) assert len(ax.lines) == 1 tm.close() axes = df.plot(subplots=True, secondary_y="a") for ax in axes: # (right) is only attached when subplots=False self._check_legend_labels(ax, labels=["a"]) assert len(ax.lines) == 1 tm.close() ax = df.plot(secondary_y="a") self._check_legend_labels(ax, labels=["a (right)"] * 5) assert len(ax.lines) == 0 assert len(ax.right_ax.lines) == 5 def test_negative_log(self): df = -DataFrame( rand(6, 4), index=list(string.ascii_letters[:6]), columns=["x", "y", "z", "four"], ) with pytest.raises(ValueError): df.plot.area(logy=True) with pytest.raises(ValueError): df.plot.area(loglog=True) def _compare_stacked_y_cood(self, normal_lines, stacked_lines): base = np.zeros(len(normal_lines[0].get_data()[1])) for nl, sl in zip(normal_lines, stacked_lines): base += nl.get_data()[1] # get y coordinates sy = sl.get_data()[1] tm.assert_numpy_array_equal(base, sy) def test_line_area_stacked(self): with tm.RNGContext(42): df = DataFrame(rand(6, 4), columns=["w", "x", "y", "z"]) neg_df = -df # each column has either positive or negative value sep_df = DataFrame( {"w": rand(6), "x": rand(6), "y": -rand(6), "z": -rand(6)} ) # each column has positive-negative mixed value mixed_df = DataFrame( randn(6, 4), index=list(string.ascii_letters[:6]), columns=["w", "x", "y", "z"], ) for kind in ["line", "area"]: ax1 = _check_plot_works(df.plot, kind=kind, stacked=False) ax2 = _check_plot_works(df.plot, kind=kind, stacked=True) self._compare_stacked_y_cood(ax1.lines, ax2.lines) ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False) ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True) self._compare_stacked_y_cood(ax1.lines, ax2.lines) ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False) ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True) self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2]) self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:]) _check_plot_works(mixed_df.plot, stacked=False) with pytest.raises(ValueError): mixed_df.plot(stacked=True) # Use an index with strictly positive values, preventing # matplotlib from warning about ignoring xlim df2 = df.set_index(df.index + 1) _check_plot_works(df2.plot, kind=kind, logx=True, stacked=True) def test_line_area_nan_df(self): values1 = [1, 2, np.nan, 3] values2 = [3, np.nan, 2, 1] df = DataFrame({"a": values1, "b": values2}) tdf = DataFrame({"a": values1, "b": values2}, index=tm.makeDateIndex(k=4)) for d in [df, tdf]: ax = _check_plot_works(d.plot) masked1 = ax.lines[0].get_ydata() masked2 = ax.lines[1].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked1.data, 2), exp) exp = np.array([3, 2, 1], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked2.data, 1), exp) tm.assert_numpy_array_equal( masked1.mask, np.array([False, False, True, False]) ) tm.assert_numpy_array_equal( masked2.mask, np.array([False, True, False, False]) ) expected1 = np.array([1, 2, 0, 3], dtype=np.float64) expected2 = np.array([3, 0, 2, 1], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected2) def test_line_lim(self): df = DataFrame(rand(6, 3), columns=["x", "y", "z"]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] ax = df.plot(secondary_y=True) xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] axes = df.plot(secondary_y=True, subplots=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) for ax in axes: assert hasattr(ax, "left_ax") assert not hasattr(ax, "right_ax") xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] def test_area_lim(self): df = DataFrame(rand(6, 4), columns=["x", "y", "z", "four"]) neg_df = -df for stacked in [True, False]: ax = _check_plot_works(df.plot.area, stacked=stacked) xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() lines = ax.get_lines() assert xmin <= lines[0].get_data()[0][0] assert xmax >= lines[0].get_data()[0][-1] assert ymin == 0 ax = _check_plot_works(neg_df.plot.area, stacked=stacked) ymin, ymax = ax.get_ylim() assert ymax == 0 @pytest.mark.slow def test_bar_colors(self): import matplotlib.pyplot as plt default_colors = self._unpack_cycler(plt.rcParams) df = DataFrame(randn(5, 5)) ax = df.plot.bar() self._check_colors(ax.patches[::5], facecolors=default_colors[:5]) tm.close() custom_colors = "rgcby" ax = df.plot.bar(color=custom_colors) self._check_colors(ax.patches[::5], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.bar(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.bar(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.bar(color="DodgerBlue") self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"]) tm.close() ax = df.plot(kind="bar", color="green") self._check_colors(ax.patches[::5], facecolors=["green"] * 5) tm.close() def test_bar_user_colors(self): df = pd.DataFrame( {"A": range(4), "B": range(1, 5), "color": ["red", "blue", "blue", "red"]} ) # This should *only* work when `y` is specified, else # we use one color per column ax = df.plot.bar(y="A", color=df["color"]) result = [p.get_facecolor() for p in ax.patches] expected = [ (1.0, 0.0, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 0.0, 1.0, 1.0), (1.0, 0.0, 0.0, 1.0), ] assert result == expected @pytest.mark.slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot.bar(linewidth=2) for r in ax.patches: assert r.get_linewidth() == 2 # stacked ax = df.plot.bar(stacked=True, linewidth=2) for r in ax.patches: assert r.get_linewidth() == 2 # subplots axes = df.plot.bar(linewidth=2, subplots=True) self._check_axes_shape(axes, axes_num=5, layout=(5, 1)) for ax in axes: for r in ax.patches: assert r.get_linewidth() == 2 @pytest.mark.slow def test_bar_barwidth(self): df = DataFrame(randn(5, 5)) width = 0.9 # regular ax = df.plot.bar(width=width) for r in ax.patches: assert r.get_width() == width / len(df.columns) # stacked ax = df.plot.bar(stacked=True, width=width) for r in ax.patches: assert r.get_width() == width # horizontal regular ax = df.plot.barh(width=width) for r in ax.patches: assert r.get_height() == width / len(df.columns) # horizontal stacked ax = df.plot.barh(stacked=True, width=width) for r in ax.patches: assert r.get_height() == width # subplots axes = df.plot.bar(width=width, subplots=True) for ax in axes: for r in ax.patches: assert r.get_width() == width # horizontal subplots axes = df.plot.barh(width=width, subplots=True) for ax in axes: for r in ax.patches: assert r.get_height() == width @pytest.mark.slow def test_bar_barwidth_position(self): df = DataFrame(randn(5, 5)) self._check_bar_alignment( df, kind="bar", stacked=False, width=0.9, position=0.2 ) self._check_bar_alignment(df, kind="bar", stacked=True, width=0.9, position=0.2) self._check_bar_alignment( df, kind="barh", stacked=False, width=0.9, position=0.2 ) self._check_bar_alignment( df, kind="barh", stacked=True, width=0.9, position=0.2 ) self._check_bar_alignment( df, kind="bar", subplots=True, width=0.9, position=0.2 ) self._check_bar_alignment( df, kind="barh", subplots=True, width=0.9, position=0.2 ) @pytest.mark.slow def test_bar_barwidth_position_int(self): # GH 12979 df = DataFrame(randn(5, 5)) for w in [1, 1.0]: ax = df.plot.bar(stacked=True, width=w) ticks = ax.xaxis.get_ticklocs() tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4])) assert ax.get_xlim() == (-0.75, 4.75) # check left-edge of bars assert ax.patches[0].get_x() == -0.5 assert ax.patches[-1].get_x() == 3.5 self._check_bar_alignment(df, kind="bar", stacked=True, width=1) self._check_bar_alignment(df, kind="barh", stacked=False, width=1) self._check_bar_alignment(df, kind="barh", stacked=True, width=1) self._check_bar_alignment(df, kind="bar", subplots=True, width=1) self._check_bar_alignment(df, kind="barh", subplots=True, width=1) @pytest.mark.slow def test_bar_bottom_left(self): df = DataFrame(rand(5, 5)) ax = df.plot.bar(stacked=False, bottom=1) result = [p.get_y() for p in ax.patches] assert result == [1] * 25 ax = df.plot.bar(stacked=True, bottom=[-1, -2, -3, -4, -5]) result = [p.get_y() for p in ax.patches[:5]] assert result == [-1, -2, -3, -4, -5] ax = df.plot.barh(stacked=False, left=np.array([1, 1, 1, 1, 1])) result = [p.get_x() for p in ax.patches] assert result == [1] * 25 ax = df.plot.barh(stacked=True, left=[1, 2, 3, 4, 5]) result = [p.get_x() for p in ax.patches[:5]] assert result == [1, 2, 3, 4, 5] axes = df.plot.bar(subplots=True, bottom=-1) for ax in axes: result = [p.get_y() for p in ax.patches] assert result == [-1] * 5 axes = df.plot.barh(subplots=True, left=np.array([1, 1, 1, 1, 1])) for ax in axes: result = [p.get_x() for p in ax.patches] assert result == [1] * 5 @pytest.mark.slow def test_bar_nan(self): df = DataFrame({"A": [10, np.nan, 20], "B": [5, 10, 20], "C": [1, 2, 3]}) ax = df.plot.bar() expected = [10, 0, 20, 5, 10, 20, 1, 2, 3] result = [p.get_height() for p in ax.patches] assert result == expected ax = df.plot.bar(stacked=True) result = [p.get_height() for p in ax.patches] assert result == expected result = [p.get_y() for p in ax.patches] expected = [0.0, 0.0, 0.0, 10.0, 0.0, 20.0, 15.0, 10.0, 40.0] assert result == expected @pytest.mark.slow def test_bar_categorical(self): # GH 13019 df1 = pd.DataFrame( np.random.randn(6, 5), index=pd.Index(list("ABCDEF")), columns=pd.Index(list("abcde")), ) # categorical index must behave the same df2 = pd.DataFrame( np.random.randn(6, 5), index=pd.CategoricalIndex(list("ABCDEF")), columns=pd.CategoricalIndex(list("abcde")), ) for df in [df1, df2]: ax = df.plot.bar() ticks = ax.xaxis.get_ticklocs() tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5])) assert ax.get_xlim() == (-0.5, 5.5) # check left-edge of bars assert ax.patches[0].get_x() == -0.25 assert ax.patches[-1].get_x() == 5.15 ax = df.plot.bar(stacked=True) tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5])) assert ax.get_xlim() == (-0.5, 5.5) assert ax.patches[0].get_x() == -0.25 assert ax.patches[-1].get_x() == 4.75 @pytest.mark.slow def test_plot_scatter(self): df = DataFrame( randn(6, 4), index=list(string.ascii_letters[:6]), columns=["x", "y", "z", "four"], ) _check_plot_works(df.plot.scatter, x="x", y="y") _check_plot_works(df.plot.scatter, x=1, y=2) with pytest.raises(TypeError): df.plot.scatter(x="x") with pytest.raises(TypeError): df.plot.scatter(y="y") # GH 6951 axes = df.plot(x="x", y="y", kind="scatter", subplots=True) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) def test_raise_error_on_datetime_time_data(self): # GH 8113, datetime.time type is not supported by matplotlib in scatter df = pd.DataFrame(np.random.randn(10), columns=["a"]) df["dtime"] = pd.date_range(start="2014-01-01", freq="h", periods=10).time msg = "must be a string or a number, not 'datetime.time'" with pytest.raises(TypeError, match=msg): df.plot(kind="scatter", x="dtime", y="a") def test_scatterplot_datetime_data(self): # GH 30391 dates = pd.date_range(start=date(2019, 1, 1), periods=12, freq="W") vals = np.random.normal(0, 1, len(dates)) df = pd.DataFrame({"dates": dates, "vals": vals}) _check_plot_works(df.plot.scatter, x="dates", y="vals") _check_plot_works(df.plot.scatter, x=0, y=1) def test_scatterplot_object_data(self): # GH 18755 df = pd.DataFrame(dict(a=["A", "B", "C"], b=[2, 3, 4])) _check_plot_works(df.plot.scatter, x="a", y="b") _check_plot_works(df.plot.scatter, x=0, y=1) df = pd.DataFrame(dict(a=["A", "B", "C"], b=["a", "b", "c"])) _check_plot_works(df.plot.scatter, x="a", y="b") _check_plot_works(df.plot.scatter, x=0, y=1) @pytest.mark.slow def test_if_scatterplot_colorbar_affects_xaxis_visibility(self): # addressing issue #10611, to ensure colobar does not # interfere with x-axis label and ticklabels with # ipython inline backend. random_array = np.random.random((1000, 3)) df = pd.DataFrame(random_array, columns=["A label", "B label", "C label"]) ax1 = df.plot.scatter(x="A label", y="B label") ax2 = df.plot.scatter(x="A label", y="B label", c="C label") vis1 = [vis.get_visible() for vis in ax1.xaxis.get_minorticklabels()] vis2 = [vis.get_visible() for vis in ax2.xaxis.get_minorticklabels()] assert vis1 == vis2 vis1 = [vis.get_visible() for vis in ax1.xaxis.get_majorticklabels()] vis2 = [vis.get_visible() for vis in ax2.xaxis.get_majorticklabels()] assert vis1 == vis2 assert ( ax1.xaxis.get_label().get_visible() == ax2.xaxis.get_label().get_visible() ) @pytest.mark.slow def test_if_hexbin_xaxis_label_is_visible(self): # addressing issue #10678, to ensure colobar does not # interfere with x-axis label and ticklabels with # ipython inline backend. random_array = np.random.random((1000, 3)) df = pd.DataFrame(random_array, columns=["A label", "B label", "C label"]) ax = df.plot.hexbin("A label", "B label", gridsize=12) assert all(vis.get_visible() for vis in ax.xaxis.get_minorticklabels()) assert all(vis.get_visible() for vis in ax.xaxis.get_majorticklabels()) assert ax.xaxis.get_label().get_visible() @pytest.mark.slow def test_if_scatterplot_colorbars_are_next_to_parent_axes(self): import matplotlib.pyplot as plt random_array = np.random.random((1000, 3)) df = pd.DataFrame(random_array, columns=["A label", "B label", "C label"]) fig, axes = plt.subplots(1, 2) df.plot.scatter("A label", "B label", c="C label", ax=axes[0]) df.plot.scatter("A label", "B label", c="C label", ax=axes[1]) plt.tight_layout() points = np.array([ax.get_position().get_points() for ax in fig.axes]) axes_x_coords = points[:, :, 0] parent_distance = axes_x_coords[1, :] - axes_x_coords[0, :] colorbar_distance = axes_x_coords[3, :] - axes_x_coords[2, :] assert np.isclose(parent_distance, colorbar_distance, atol=1e-7).all() @pytest.mark.parametrize("x, y", [("x", "y"), ("y", "x"), ("y", "y")]) @pytest.mark.slow def test_plot_scatter_with_categorical_data(self, x, y): # after fixing GH 18755, should be able to plot categorical data df = pd.DataFrame( {"x": [1, 2, 3, 4], "y": pd.Categorical(["a", "b", "a", "c"])} ) _check_plot_works(df.plot.scatter, x=x, y=y) @pytest.mark.slow def test_plot_scatter_with_c(self): df = DataFrame( randn(6, 4), index=list(string.ascii_letters[:6]), columns=["x", "y", "z", "four"], ) axes = [df.plot.scatter(x="x", y="y", c="z"), df.plot.scatter(x=0, y=1, c=2)] for ax in axes: # default to Greys assert ax.collections[0].cmap.name == "Greys" # n.b. there appears to be no public method # to get the colorbar label assert ax.collections[0].colorbar._label == "z" cm = "cubehelix" ax = df.plot.scatter(x="x", y="y", c="z", colormap=cm) assert ax.collections[0].cmap.name == cm # verify turning off colorbar works ax = df.plot.scatter(x="x", y="y", c="z", colorbar=False) assert ax.collections[0].colorbar is None # verify that we can still plot a solid color ax = df.plot.scatter(x=0, y=1, c="red") assert ax.collections[0].colorbar is None self._check_colors(ax.collections, facecolors=["r"]) # Ensure that we can pass an np.array straight through to matplotlib, # this functionality was accidentally removed previously. # See https://github.com/pandas-dev/pandas/issues/8852 for bug report # # Exercise colormap path and non-colormap path as they are independent # df = DataFrame({"A": [1, 2], "B": [3, 4]}) red_rgba = [1.0, 0.0, 0.0, 1.0] green_rgba = [0.0, 1.0, 0.0, 1.0] rgba_array = np.array([red_rgba, green_rgba]) ax = df.plot.scatter(x="A", y="B", c=rgba_array) # expect the face colors of the points in the non-colormap path to be # identical to the values we supplied, normally we'd be on shaky ground # comparing floats for equality but here we expect them to be # identical. tm.assert_numpy_array_equal(ax.collections[0].get_facecolor(), rgba_array) # we don't test the colors of the faces in this next plot because they # are dependent on the spring colormap, which may change its colors # later. float_array = np.array([0.0, 1.0]) df.plot.scatter(x="A", y="B", c=float_array, cmap="spring") def test_scatter_colors(self): df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]}) with pytest.raises(TypeError): df.plot.scatter(x="a", y="b", c="c", color="green") default_colors = self._unpack_cycler(self.plt.rcParams) ax = df.plot.scatter(x="a", y="b", c="c") tm.assert_numpy_array_equal( ax.collections[0].get_facecolor()[0], np.array(self.colorconverter.to_rgba(default_colors[0])), ) ax = df.plot.scatter(x="a", y="b", color="white") tm.assert_numpy_array_equal( ax.collections[0].get_facecolor()[0], np.array([1, 1, 1, 1], dtype=np.float64), ) @pytest.mark.slow def test_plot_bar(self): df = DataFrame( randn(6, 4), index=list(string.ascii_letters[:6]), columns=["one", "two", "three", "four"], ) _check_plot_works(df.plot.bar) _check_plot_works(df.plot.bar, legend=False) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(df.plot.bar, subplots=True) _check_plot_works(df.plot.bar, stacked=True) df = DataFrame( randn(10, 15), index=list(string.ascii_letters[:10]), columns=range(15) ) _check_plot_works(df.plot.bar) df = DataFrame({"a": [0, 1], "b": [1, 0]}) ax = _check_plot_works(df.plot.bar) self._check_ticks_props(ax, xrot=90) ax = df.plot.bar(rot=35, fontsize=10) self._check_ticks_props(ax, xrot=35, xlabelsize=10, ylabelsize=10) ax = _check_plot_works(df.plot.barh) self._check_ticks_props(ax, yrot=0) ax = df.plot.barh(rot=55, fontsize=11) self._check_ticks_props(ax, yrot=55, ylabelsize=11, xlabelsize=11) def _check_bar_alignment( self, df, kind="bar", stacked=False, subplots=False, align="center", width=0.5, position=0.5, ): axes = df.plot( kind=kind, stacked=stacked, subplots=subplots, align=align, width=width, position=position, grid=True, ) axes = self._flatten_visible(axes) for ax in axes: if kind == "bar": axis = ax.xaxis ax_min, ax_max = ax.get_xlim() min_edge = min(p.get_x() for p in ax.patches) max_edge = max(p.get_x() + p.get_width() for p in ax.patches) elif kind == "barh": axis = ax.yaxis ax_min, ax_max = ax.get_ylim() min_edge = min(p.get_y() for p in ax.patches) max_edge = max(p.get_y() + p.get_height() for p in ax.patches) else: raise ValueError # GH 7498 # compare margins between lim and bar edges tm.assert_almost_equal(ax_min, min_edge - 0.25) tm.assert_almost_equal(ax_max, max_edge + 0.25) p = ax.patches[0] if kind == "bar" and (stacked is True or subplots is True): edge = p.get_x() center = edge + p.get_width() * position elif kind == "bar" and stacked is False: center = p.get_x() + p.get_width() * len(df.columns) * position edge = p.get_x() elif kind == "barh" and (stacked is True or subplots is True): center = p.get_y() + p.get_height() * position edge = p.get_y() elif kind == "barh" and stacked is False: center = p.get_y() + p.get_height() * len(df.columns) * position edge = p.get_y() else: raise ValueError # Check the ticks locates on integer assert (axis.get_ticklocs() == np.arange(len(df))).all() if align == "center": # Check whether the bar locates on center tm.assert_almost_equal(axis.get_ticklocs()[0], center) elif align == "edge": # Check whether the bar's edge starts from the tick tm.assert_almost_equal(axis.get_ticklocs()[0], edge) else: raise ValueError return axes @pytest.mark.slow def test_bar_stacked_center(self): # GH2157 df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5)) self._check_bar_alignment(df, kind="bar", stacked=True) self._check_bar_alignment(df, kind="bar", stacked=True, width=0.9) self._check_bar_alignment(df, kind="barh", stacked=True) self._check_bar_alignment(df, kind="barh", stacked=True, width=0.9) @pytest.mark.slow def test_bar_center(self): df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5)) self._check_bar_alignment(df, kind="bar", stacked=False) self._check_bar_alignment(df, kind="bar", stacked=False, width=0.9) self._check_bar_alignment(df, kind="barh", stacked=False) self._check_bar_alignment(df, kind="barh", stacked=False, width=0.9) @pytest.mark.slow def test_bar_subplots_center(self): df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5)) self._check_bar_alignment(df, kind="bar", subplots=True) self._check_bar_alignment(df, kind="bar", subplots=True, width=0.9) self._check_bar_alignment(df, kind="barh", subplots=True) self._check_bar_alignment(df, kind="barh", subplots=True, width=0.9) @pytest.mark.slow def test_bar_align_single_column(self): df = DataFrame(randn(5)) self._check_bar_alignment(df, kind="bar", stacked=False) self._check_bar_alignment(df, kind="bar", stacked=True) self._check_bar_alignment(df, kind="barh", stacked=False) self._check_bar_alignment(df, kind="barh", stacked=True) self._check_bar_alignment(df, kind="bar", subplots=True) self._check_bar_alignment(df, kind="barh", subplots=True) @pytest.mark.slow def test_bar_edge(self): df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5)) self._check_bar_alignment(df, kind="bar", stacked=True, align="edge") self._check_bar_alignment(df, kind="bar", stacked=True, width=0.9, align="edge") self._check_bar_alignment(df, kind="barh", stacked=True, align="edge") self._check_bar_alignment( df, kind="barh", stacked=True, width=0.9, align="edge" ) self._check_bar_alignment(df, kind="bar", stacked=False, align="edge") self._check_bar_alignment( df, kind="bar", stacked=False, width=0.9, align="edge" ) self._check_bar_alignment(df, kind="barh", stacked=False, align="edge") self._check_bar_alignment( df, kind="barh", stacked=False, width=0.9, align="edge" ) self._check_bar_alignment(df, kind="bar", subplots=True, align="edge") self._check_bar_alignment( df, kind="bar", subplots=True, width=0.9, align="edge" ) self._check_bar_alignment(df, kind="barh", subplots=True, align="edge") self._check_bar_alignment( df, kind="barh", subplots=True, width=0.9, align="edge" ) @pytest.mark.slow def test_bar_log_no_subplots(self): # GH3254, GH3298 matplotlib/matplotlib#1882, #1892 # regressions in 1.2.1 expected = np.array([0.1, 1.0, 10.0, 100]) # no subplots df = DataFrame({"A": [3] * 5, "B": list(range(1, 6))}, index=range(5)) ax = df.plot.bar(grid=True, log=True) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) @pytest.mark.slow def test_bar_log_subplots(self): expected = np.array([0.1, 1.0, 10.0, 100.0, 1000.0, 1e4]) ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot.bar( log=True, subplots=True ) tm.assert_numpy_array_equal(ax[0].yaxis.get_ticklocs(), expected) tm.assert_numpy_array_equal(ax[1].yaxis.get_ticklocs(), expected) @pytest.mark.slow def test_boxplot(self): df = self.hist_df series = df["height"] numeric_cols = df._get_numeric_data().columns labels = [pprint_thing(c) for c in numeric_cols] ax = _check_plot_works(df.plot.box) self._check_text_labels(ax.get_xticklabels(), labels) tm.assert_numpy_array_equal( ax.xaxis.get_ticklocs(), np.arange(1, len(numeric_cols) + 1) ) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) axes = series.plot.box(rot=40) self._check_ticks_props(axes, xrot=40, yrot=0) tm.close() ax = _check_plot_works(series.plot.box) positions = np.array([1, 6, 7]) ax = df.plot.box(positions=positions) numeric_cols = df._get_numeric_data().columns labels = [pprint_thing(c) for c in numeric_cols] self._check_text_labels(ax.get_xticklabels(), labels) tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), positions) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) @pytest.mark.slow def test_boxplot_vertical(self): df = self.hist_df numeric_cols = df._get_numeric_data().columns labels = [pprint_thing(c) for c in numeric_cols] # if horizontal, yticklabels are rotated ax = df.plot.box(rot=50, fontsize=8, vert=False) self._check_ticks_props(ax, xrot=0, yrot=50, ylabelsize=8) self._check_text_labels(ax.get_yticklabels(), labels) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.box, subplots=True, vert=False, logx=True) self._check_axes_shape(axes, axes_num=3, layout=(1, 3)) self._check_ax_scales(axes, xaxis="log") for ax, label in zip(axes, labels): self._check_text_labels(ax.get_yticklabels(), [label]) assert len(ax.lines) == self.bp_n_objects positions = np.array([3, 2, 8]) ax = df.plot.box(positions=positions, vert=False) self._check_text_labels(ax.get_yticklabels(), labels) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), positions) assert len(ax.lines) == self.bp_n_objects * len(numeric_cols) @pytest.mark.slow def test_boxplot_return_type(self): df = DataFrame( randn(6, 4), index=list(string.ascii_letters[:6]), columns=["one", "two", "three", "four"], ) with pytest.raises(ValueError): df.plot.box(return_type="NOTATYPE") result = df.plot.box(return_type="dict") self._check_box_return_type(result, "dict") result = df.plot.box(return_type="axes") self._check_box_return_type(result, "axes") result = df.plot.box() # default axes self._check_box_return_type(result, "axes") result = df.plot.box(return_type="both") self._check_box_return_type(result, "both") @pytest.mark.slow def test_boxplot_subplots_return_type(self): df = self.hist_df # normal style: return_type=None result = df.plot.box(subplots=True) assert isinstance(result, Series) self._check_box_return_type( result, None, expected_keys=["height", "weight", "category"] ) for t in ["dict", "axes", "both"]: returned = df.plot.box(return_type=t, subplots=True) self._check_box_return_type( returned, t, expected_keys=["height", "weight", "category"], check_ax_title=False, ) @pytest.mark.slow @td.skip_if_no_scipy def test_kde_df(self): df = DataFrame(randn(100, 4)) ax = _check_plot_works(df.plot, kind="kde") expected = [pprint_thing(c) for c in df.columns] self._check_legend_labels(ax, labels=expected) self._check_ticks_props(ax, xrot=0) ax = df.plot(kind="kde", rot=20, fontsize=5) self._check_ticks_props(ax, xrot=20, xlabelsize=5, ylabelsize=5) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot, kind="kde", subplots=True) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) axes = df.plot(kind="kde", logy=True, subplots=True) self._check_ax_scales(axes, yaxis="log") @pytest.mark.slow @td.skip_if_no_scipy def test_kde_missing_vals(self): df = DataFrame(np.random.uniform(size=(100, 4))) df.loc[0, 0] = np.nan _check_plot_works(df.plot, kind="kde") @pytest.mark.slow def test_hist_df(self): from matplotlib.patches import Rectangle df = DataFrame(randn(100, 4)) series = df[0] ax = _check_plot_works(df.plot.hist) expected = [pprint_thing(c) for c in df.columns] self._check_legend_labels(ax, labels=expected) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.hist, subplots=True, logy=True) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) self._check_ax_scales(axes, yaxis="log") axes = series.plot.hist(rot=40) self._check_ticks_props(axes, xrot=40, yrot=0) tm.close() ax = series.plot.hist(cumulative=True, bins=4, density=True) # height of last bin (index 5) must be 1.0 rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] tm.assert_almost_equal(rects[-1].get_height(), 1.0) tm.close() ax = series.plot.hist(cumulative=True, bins=4) rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] tm.assert_almost_equal(rects[-2].get_height(), 100.0) tm.close() # if horizontal, yticklabels are rotated axes = df.plot.hist(rot=50, fontsize=8, orientation="horizontal") self._check_ticks_props(axes, xrot=0, yrot=50, ylabelsize=8) def _check_box_coord( self, patches, expected_y=None, expected_h=None, expected_x=None, expected_w=None, ): result_y = np.array([p.get_y() for p in patches]) result_height = np.array([p.get_height() for p in patches]) result_x = np.array([p.get_x() for p in patches]) result_width = np.array([p.get_width() for p in patches]) # dtype is depending on above values, no need to check if expected_y is not None: tm.assert_numpy_array_equal(result_y, expected_y, check_dtype=False) if expected_h is not None: tm.assert_numpy_array_equal(result_height, expected_h, check_dtype=False) if expected_x is not None: tm.assert_numpy_array_equal(result_x, expected_x, check_dtype=False) if expected_w is not None: tm.assert_numpy_array_equal(result_width, expected_w, check_dtype=False) @pytest.mark.slow def test_hist_df_coord(self): normal_df = DataFrame( { "A": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([10, 9, 8, 7, 6])), "B": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([8, 8, 8, 8, 8])), "C": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([6, 7, 8, 9, 10])), }, columns=["A", "B", "C"], ) nan_df = DataFrame( { "A": np.repeat( np.array([np.nan, 1, 2, 3, 4, 5]), np.array([3, 10, 9, 8, 7, 6]) ), "B": np.repeat( np.array([1, np.nan, 2, 3, 4, 5]), np.array([8, 3, 8, 8, 8, 8]) ), "C": np.repeat( np.array([1, 2, 3, np.nan, 4, 5]), np.array([6, 7, 8, 3, 9, 10]) ), }, columns=["A", "B", "C"], ) for df in [normal_df, nan_df]: ax = df.plot.hist(bins=5) self._check_box_coord( ax.patches[:5], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([10, 9, 8, 7, 6]), ) self._check_box_coord( ax.patches[5:10], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([8, 8, 8, 8, 8]), ) self._check_box_coord( ax.patches[10:], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([6, 7, 8, 9, 10]), ) ax = df.plot.hist(bins=5, stacked=True) self._check_box_coord( ax.patches[:5], expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([10, 9, 8, 7, 6]), ) self._check_box_coord( ax.patches[5:10], expected_y=np.array([10, 9, 8, 7, 6]), expected_h=np.array([8, 8, 8, 8, 8]), ) self._check_box_coord( ax.patches[10:], expected_y=np.array([18, 17, 16, 15, 14]), expected_h=np.array([6, 7, 8, 9, 10]), ) axes = df.plot.hist(bins=5, stacked=True, subplots=True) self._check_box_coord( axes[0].patches, expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([10, 9, 8, 7, 6]), ) self._check_box_coord( axes[1].patches, expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([8, 8, 8, 8, 8]), ) self._check_box_coord( axes[2].patches, expected_y=np.array([0, 0, 0, 0, 0]), expected_h=np.array([6, 7, 8, 9, 10]), ) # horizontal ax = df.plot.hist(bins=5, orientation="horizontal") self._check_box_coord( ax.patches[:5], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([10, 9, 8, 7, 6]), ) self._check_box_coord( ax.patches[5:10], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([8, 8, 8, 8, 8]), ) self._check_box_coord( ax.patches[10:], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([6, 7, 8, 9, 10]), ) ax = df.plot.hist(bins=5, stacked=True, orientation="horizontal") self._check_box_coord( ax.patches[:5], expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([10, 9, 8, 7, 6]), ) self._check_box_coord( ax.patches[5:10], expected_x=np.array([10, 9, 8, 7, 6]), expected_w=np.array([8, 8, 8, 8, 8]), ) self._check_box_coord( ax.patches[10:], expected_x=np.array([18, 17, 16, 15, 14]), expected_w=np.array([6, 7, 8, 9, 10]), ) axes = df.plot.hist( bins=5, stacked=True, subplots=True, orientation="horizontal" ) self._check_box_coord( axes[0].patches, expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([10, 9, 8, 7, 6]), ) self._check_box_coord( axes[1].patches, expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([8, 8, 8, 8, 8]), ) self._check_box_coord( axes[2].patches, expected_x=np.array([0, 0, 0, 0, 0]), expected_w=np.array([6, 7, 8, 9, 10]), ) @pytest.mark.slow def test_plot_int_columns(self): df = DataFrame(randn(100, 4)).cumsum() _check_plot_works(df.plot, legend=True) @pytest.mark.slow def test_df_legend_labels(self): kinds = ["line", "bar", "barh", "kde", "area", "hist"] df = DataFrame(rand(3, 3), columns=["a", "b", "c"]) df2 = DataFrame(rand(3, 3), columns=["d", "e", "f"]) df3 = DataFrame(rand(3, 3), columns=["g", "h", "i"]) df4 = DataFrame(rand(3, 3), columns=["j", "k", "l"]) for kind in kinds: ax = df.plot(kind=kind, legend=True) self._check_legend_labels(ax, labels=df.columns) ax = df2.plot(kind=kind, legend=False, ax=ax) self._check_legend_labels(ax, labels=df.columns) ax = df3.plot(kind=kind, legend=True, ax=ax) self._check_legend_labels(ax, labels=df.columns.union(df3.columns)) ax = df4.plot(kind=kind, legend="reverse", ax=ax) expected = list(df.columns.union(df3.columns)) + list(reversed(df4.columns)) self._check_legend_labels(ax, labels=expected) # Secondary Y ax = df.plot(legend=True, secondary_y="b") self._check_legend_labels(ax, labels=["a", "b (right)", "c"]) ax = df2.plot(legend=False, ax=ax) self._check_legend_labels(ax, labels=["a", "b (right)", "c"]) ax = df3.plot(kind="bar", legend=True, secondary_y="h", ax=ax) self._check_legend_labels( ax, labels=["a", "b (right)", "c", "g", "h (right)", "i"] ) # Time Series ind = date_range("1/1/2014", periods=3) df = DataFrame(randn(3, 3), columns=["a", "b", "c"], index=ind) df2 = DataFrame(randn(3, 3), columns=["d", "e", "f"], index=ind) df3 = DataFrame(randn(3, 3), columns=["g", "h", "i"], index=ind) ax = df.plot(legend=True, secondary_y="b") self._check_legend_labels(ax, labels=["a", "b (right)", "c"]) ax = df2.plot(legend=False, ax=ax) self._check_legend_labels(ax, labels=["a", "b (right)", "c"]) ax = df3.plot(legend=True, ax=ax) self._check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h", "i"]) # scatter ax = df.plot.scatter(x="a", y="b", label="data1") self._check_legend_labels(ax, labels=["data1"]) ax = df2.plot.scatter(x="d", y="e", legend=False, label="data2", ax=ax) self._check_legend_labels(ax, labels=["data1"]) ax = df3.plot.scatter(x="g", y="h", label="data3", ax=ax) self._check_legend_labels(ax, labels=["data1", "data3"]) # ensure label args pass through and # index name does not mutate # column names don't mutate df5 = df.set_index("a") ax = df5.plot(y="b") self._check_legend_labels(ax, labels=["b"]) ax = df5.plot(y="b", label="LABEL_b") self._check_legend_labels(ax, labels=["LABEL_b"]) self._check_text_labels(ax.xaxis.get_label(), "a") ax = df5.plot(y="c", label="LABEL_c", ax=ax) self._check_legend_labels(ax, labels=["LABEL_b", "LABEL_c"]) assert df5.columns.tolist() == ["b", "c"] def test_missing_marker_multi_plots_on_same_ax(self): # GH 18222 df = pd.DataFrame( data=[[1, 1, 1, 1], [2, 2, 4, 8]], columns=["x", "r", "g", "b"] ) fig, ax = self.plt.subplots(nrows=1, ncols=3) # Left plot df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[0]) df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[0]) df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[0]) self._check_legend_labels(ax[0], labels=["r", "g", "b"]) self._check_legend_marker(ax[0], expected_markers=["o", "x", "o"]) # Center plot df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[1]) df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[1]) df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[1]) self._check_legend_labels(ax[1], labels=["b", "r", "g"]) self._check_legend_marker(ax[1], expected_markers=["o", "o", "x"]) # Right plot df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[2]) df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[2]) df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[2]) self._check_legend_labels(ax[2], labels=["g", "b", "r"]) self._check_legend_marker(ax[2], expected_markers=["x", "o", "o"]) def test_legend_name(self): multi = DataFrame( randn(4, 4), columns=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])], ) multi.columns.names = ["group", "individual"] ax = multi.plot() leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, "group,individual") df = DataFrame(randn(5, 5)) ax = df.plot(legend=True, ax=ax) leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, "group,individual") df.columns.name = "new" ax = df.plot(legend=False, ax=ax) leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, "group,individual") ax = df.plot(legend=True, ax=ax) leg_title = ax.legend_.get_title() self._check_text_labels(leg_title, "new") @pytest.mark.slow def test_no_legend(self): kinds = ["line", "bar", "barh", "kde", "area", "hist"] df = DataFrame(rand(3, 3), columns=["a", "b", "c"]) for kind in kinds: ax = df.plot(kind=kind, legend=False) self._check_legend_labels(ax, visible=False) @pytest.mark.slow def test_style_by_column(self): import matplotlib.pyplot as plt fig = plt.gcf() df = DataFrame(randn(100, 3)) for markers in [ {0: "^", 1: "+", 2: "o"}, {0: "^", 1: "+"}, ["^", "+", "o"], ["^", "+"], ]: fig.clf() fig.add_subplot(111) ax = df.plot(style=markers) for i, l in enumerate(ax.get_lines()[: len(markers)]): assert l.get_marker() == markers[i] @pytest.mark.slow def test_line_label_none(self): s = Series([1, 2]) ax = s.plot() assert ax.get_legend() is None ax = s.plot(legend=True) assert ax.get_legend().get_texts()[0].get_text() == "None" @pytest.mark.slow def test_line_colors(self): from matplotlib import cm custom_colors = "rgcby" df = DataFrame(randn(5, 5)) ax = df.plot(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax2 = df.plot(color=custom_colors) lines2 = ax2.get_lines() for l1, l2 in zip(ax.get_lines(), lines2): assert l1.get_color() == l2.get_color() tm.close() ax = df.plot(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') ax = df.loc[:, [0]].plot(color="DodgerBlue") self._check_colors(ax.lines, linecolors=["DodgerBlue"]) ax = df.plot(color="red") self._check_colors(ax.get_lines(), linecolors=["red"] * 5) tm.close() # GH 10299 custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"] ax = df.plot(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() with pytest.raises(ValueError): # Color contains shorthand hex value results in ValueError custom_colors = ["#F00", "#00F", "#FF0", "#000", "#FFF"] # Forced show plot _check_plot_works(df.plot, color=custom_colors) @pytest.mark.slow def test_dont_modify_colors(self): colors = ["r", "g", "b"] pd.DataFrame(np.random.rand(10, 2)).plot(color=colors) assert len(colors) == 3 @pytest.mark.slow def test_line_colors_and_styles_subplots(self): # GH 9894 from matplotlib import cm default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) axes = df.plot(subplots=True) for ax, c in zip(axes, list(default_colors)): c = [c] self._check_colors(ax.get_lines(), linecolors=c) tm.close() # single color char axes = df.plot(subplots=True, color="k") for ax in axes: self._check_colors(ax.get_lines(), linecolors=["k"]) tm.close() # single color str axes = df.plot(subplots=True, color="green") for ax in axes: self._check_colors(ax.get_lines(), linecolors=["green"]) tm.close() custom_colors = "rgcby" axes = df.plot(color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() axes = df.plot(color=list(custom_colors), subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # GH 10299 custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"] axes = df.plot(color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() with pytest.raises(ValueError): # Color contains shorthand hex value results in ValueError custom_colors = ["#F00", "#00F", "#FF0", "#000", "#FFF"] # Forced show plot # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(df.plot, color=custom_colors, subplots=True) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] for cmap in ["jet", cm.jet]: axes = df.plot(colormap=cmap, subplots=True) for ax, c in zip(axes, rgba_colors): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') axes = df.loc[:, [0]].plot(color="DodgerBlue", subplots=True) self._check_colors(axes[0].lines, linecolors=["DodgerBlue"]) # single character style axes = df.plot(style="r", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["r"]) tm.close() # list of styles styles = list("rgcby") axes = df.plot(style=styles, subplots=True) for ax, c in zip(axes, styles): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() @pytest.mark.slow def test_area_colors(self): from matplotlib import cm from matplotlib.collections import PolyCollection custom_colors = "rgcby" df = DataFrame(rand(5, 5)) ax = df.plot.area(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] self._check_colors(poly, facecolors=custom_colors) handles, labels = ax.get_legend_handles_labels() self._check_colors(handles, facecolors=custom_colors) for h in handles: assert h.get_alpha() is None tm.close() ax = df.plot.area(colormap="jet") jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=jet_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] self._check_colors(poly, facecolors=jet_colors) handles, labels = ax.get_legend_handles_labels() self._check_colors(handles, facecolors=jet_colors) for h in handles: assert h.get_alpha() is None tm.close() # When stacked=False, alpha is set to 0.5 ax = df.plot.area(colormap=cm.jet, stacked=False) self._check_colors(ax.get_lines(), linecolors=jet_colors) poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors] self._check_colors(poly, facecolors=jet_with_alpha) handles, labels = ax.get_legend_handles_labels() linecolors = jet_with_alpha self._check_colors(handles[: len(jet_colors)], linecolors=linecolors) for h in handles: assert h.get_alpha() == 0.5 @pytest.mark.slow def test_hist_colors(self): default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) ax = df.plot.hist() self._check_colors(ax.patches[::10], facecolors=default_colors[:5]) tm.close() custom_colors = "rgcby" ax = df.plot.hist(color=custom_colors) self._check_colors(ax.patches[::10], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.hist(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.hist(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::10], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.hist(color="DodgerBlue") self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"]) ax = df.plot(kind="hist", color="green") self._check_colors(ax.patches[::10], facecolors=["green"] * 5) tm.close() @pytest.mark.slow @td.skip_if_no_scipy def test_kde_colors(self): from matplotlib import cm custom_colors = "rgcby" df = DataFrame(rand(5, 5)) ax = df.plot.kde(color=custom_colors) self._check_colors(ax.get_lines(), linecolors=custom_colors) tm.close() ax = df.plot.kde(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) tm.close() ax = df.plot.kde(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] self._check_colors(ax.get_lines(), linecolors=rgba_colors) @pytest.mark.slow @td.skip_if_no_scipy def test_kde_colors_and_styles_subplots(self): from matplotlib import cm default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) axes = df.plot(kind="kde", subplots=True) for ax, c in zip(axes, list(default_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # single color char axes = df.plot(kind="kde", color="k", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["k"]) tm.close() # single color str axes = df.plot(kind="kde", color="red", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["red"]) tm.close() custom_colors = "rgcby" axes = df.plot(kind="kde", color=custom_colors, subplots=True) for ax, c in zip(axes, list(custom_colors)): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] for cmap in ["jet", cm.jet]: axes = df.plot(kind="kde", colormap=cmap, subplots=True) for ax, c in zip(axes, rgba_colors): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() # make color a list if plotting one column frame # handles cases like df.plot(color='DodgerBlue') axes = df.loc[:, [0]].plot(kind="kde", color="DodgerBlue", subplots=True) self._check_colors(axes[0].lines, linecolors=["DodgerBlue"]) # single character style axes = df.plot(kind="kde", style="r", subplots=True) for ax in axes: self._check_colors(ax.get_lines(), linecolors=["r"]) tm.close() # list of styles styles = list("rgcby") axes = df.plot(kind="kde", style=styles, subplots=True) for ax, c in zip(axes, styles): self._check_colors(ax.get_lines(), linecolors=[c]) tm.close() @pytest.mark.slow def test_boxplot_colors(self): def _check_colors(bp, box_c, whiskers_c, medians_c, caps_c="k", fliers_c=None): # TODO: outside this func? if fliers_c is None: fliers_c = "k" self._check_colors(bp["boxes"], linecolors=[box_c] * len(bp["boxes"])) self._check_colors( bp["whiskers"], linecolors=[whiskers_c] * len(bp["whiskers"]) ) self._check_colors( bp["medians"], linecolors=[medians_c] * len(bp["medians"]) ) self._check_colors(bp["fliers"], linecolors=[fliers_c] * len(bp["fliers"])) self._check_colors(bp["caps"], linecolors=[caps_c] * len(bp["caps"])) default_colors = self._unpack_cycler(self.plt.rcParams) df = DataFrame(randn(5, 5)) bp = df.plot.box(return_type="dict") _check_colors(bp, default_colors[0], default_colors[0], default_colors[2]) tm.close() dict_colors = dict( boxes="#572923", whiskers="#982042", medians="#804823", caps="#123456" ) bp = df.plot.box(color=dict_colors, sym="r+", return_type="dict") _check_colors( bp, dict_colors["boxes"], dict_colors["whiskers"], dict_colors["medians"], dict_colors["caps"], "r", ) tm.close() # partial colors dict_colors = dict(whiskers="c", medians="m") bp = df.plot.box(color=dict_colors, return_type="dict") _check_colors(bp, default_colors[0], "c", "m") tm.close() from matplotlib import cm # Test str -> colormap functionality bp = df.plot.box(colormap="jet", return_type="dict") jet_colors = [cm.jet(n) for n in np.linspace(0, 1, 3)] _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2]) tm.close() # Test colormap functionality bp = df.plot.box(colormap=cm.jet, return_type="dict") _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2]) tm.close() # string color is applied to all artists except fliers bp = df.plot.box(color="DodgerBlue", return_type="dict") _check_colors(bp, "DodgerBlue", "DodgerBlue", "DodgerBlue", "DodgerBlue") # tuple is also applied to all artists except fliers bp = df.plot.box(color=(0, 1, 0), sym="#123456", return_type="dict") _check_colors(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), "#123456") with pytest.raises(ValueError): # Color contains invalid key results in ValueError df.plot.box(color=dict(boxes="red", xxxx="blue")) def test_default_color_cycle(self): import matplotlib.pyplot as plt import cycler colors = list("rgbk") plt.rcParams["axes.prop_cycle"] = cycler.cycler("color", colors) df = DataFrame(randn(5, 3)) ax = df.plot() expected = self._unpack_cycler(plt.rcParams)[:3] self._check_colors(ax.get_lines(), linecolors=expected) def test_unordered_ts(self): df = DataFrame( np.array([3.0, 2.0, 1.0]), index=[date(2012, 10, 1), date(2012, 9, 1), date(2012, 8, 1)], columns=["test"], ) ax = df.plot() xticks = ax.lines[0].get_xdata() assert xticks[0] < xticks[1] ydata = ax.lines[0].get_ydata() tm.assert_numpy_array_equal(ydata, np.array([1.0, 2.0, 3.0])) @td.skip_if_no_scipy def test_kind_both_ways(self): df = DataFrame({"x": [1, 2, 3]}) for kind in plotting.PlotAccessor._common_kinds: df.plot(kind=kind) getattr(df.plot, kind)() for kind in ["scatter", "hexbin"]: df.plot("x", "x", kind=kind) getattr(df.plot, kind)("x", "x") def test_all_invalid_plot_data(self): df = DataFrame(list("abcd")) for kind in plotting.PlotAccessor._common_kinds: msg = "no numeric data to plot" with pytest.raises(TypeError, match=msg): df.plot(kind=kind) @pytest.mark.slow def test_partially_invalid_plot_data(self): with tm.RNGContext(42): df = DataFrame(randn(10, 2), dtype=object) df[np.random.rand(df.shape[0]) > 0.5] = "a" for kind in plotting.PlotAccessor._common_kinds: msg = "no numeric data to plot" with pytest.raises(TypeError, match=msg): df.plot(kind=kind) with tm.RNGContext(42): # area plot doesn't support positive/negative mixed data kinds = ["area"] df = DataFrame(rand(10, 2), dtype=object) df[np.random.rand(df.shape[0]) > 0.5] = "a" for kind in kinds: with pytest.raises(TypeError): df.plot(kind=kind) def test_invalid_kind(self): df = DataFrame(randn(10, 2)) with pytest.raises(ValueError): df.plot(kind="aasdf") @pytest.mark.parametrize( "x,y,lbl", [ (["B", "C"], "A", "a"), (["A"], ["B", "C"], ["b", "c"]), ("A", ["B", "C"], "badlabel"), ], ) def test_invalid_xy_args(self, x, y, lbl): # GH 18671, 19699 allows y to be list-like but not x df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) with pytest.raises(ValueError): df.plot(x=x, y=y, label=lbl) @pytest.mark.parametrize("x,y", [("A", "B"), (["A"], "B")]) def test_invalid_xy_args_dup_cols(self, x, y): # GH 18671, 19699 allows y to be list-like but not x df = DataFrame([[1, 3, 5], [2, 4, 6]], columns=list("AAB")) with pytest.raises(ValueError): df.plot(x=x, y=y) @pytest.mark.parametrize( "x,y,lbl,colors", [ ("A", ["B"], ["b"], ["red"]), ("A", ["B", "C"], ["b", "c"], ["red", "blue"]), (0, [1, 2], ["bokeh", "cython"], ["green", "yellow"]), ], ) def test_y_listlike(self, x, y, lbl, colors): # GH 19699: tests list-like y and verifies lbls & colors df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) _check_plot_works(df.plot, x="A", y=y, label=lbl) ax = df.plot(x=x, y=y, label=lbl, color=colors) assert len(ax.lines) == len(y) self._check_colors(ax.get_lines(), linecolors=colors) @pytest.mark.parametrize("x,y,colnames", [(0, 1, ["A", "B"]), (1, 0, [0, 1])]) def test_xy_args_integer(self, x, y, colnames): # GH 20056: tests integer args for xy and checks col names df = DataFrame({"A": [1, 2], "B": [3, 4]}) df.columns = colnames _check_plot_works(df.plot, x=x, y=y) @pytest.mark.slow def test_hexbin_basic(self): df = self.hexbin_df ax = df.plot.hexbin(x="A", y="B", gridsize=10) # TODO: need better way to test. This just does existence. assert len(ax.collections) == 1 # GH 6951 axes = df.plot.hexbin(x="A", y="B", subplots=True) # hexbin should have 2 axes in the figure, 1 for plotting and another # is colorbar assert len(axes[0].figure.axes) == 2 # return value is single axes self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) @pytest.mark.slow def test_hexbin_with_c(self): df = self.hexbin_df ax = df.plot.hexbin(x="A", y="B", C="C") assert len(ax.collections) == 1 ax = df.plot.hexbin(x="A", y="B", C="C", reduce_C_function=np.std) assert len(ax.collections) == 1 @pytest.mark.slow def test_hexbin_cmap(self): df = self.hexbin_df # Default to BuGn ax = df.plot.hexbin(x="A", y="B") assert ax.collections[0].cmap.name == "BuGn" cm = "cubehelix" ax = df.plot.hexbin(x="A", y="B", colormap=cm) assert ax.collections[0].cmap.name == cm @pytest.mark.slow def test_no_color_bar(self): df = self.hexbin_df ax = df.plot.hexbin(x="A", y="B", colorbar=None) assert ax.collections[0].colorbar is None @pytest.mark.slow def test_allow_cmap(self): df = self.hexbin_df ax = df.plot.hexbin(x="A", y="B", cmap="YlGn") assert ax.collections[0].cmap.name == "YlGn" with pytest.raises(TypeError): df.plot.hexbin(x="A", y="B", cmap="YlGn", colormap="BuGn") @pytest.mark.slow def test_pie_df(self): df = DataFrame( np.random.rand(5, 3), columns=["X", "Y", "Z"], index=["a", "b", "c", "d", "e"], ) with pytest.raises(ValueError): df.plot.pie() ax = _check_plot_works(df.plot.pie, y="Y") self._check_text_labels(ax.texts, df.index) ax = _check_plot_works(df.plot.pie, y=2) self._check_text_labels(ax.texts, df.index) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.plot.pie, subplots=True) assert len(axes) == len(df.columns) for ax in axes: self._check_text_labels(ax.texts, df.index) for ax, ylabel in zip(axes, df.columns): assert ax.get_ylabel() == ylabel labels = ["A", "B", "C", "D", "E"] color_args = ["r", "g", "b", "c", "m"] with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.plot.pie, subplots=True, labels=labels, colors=color_args ) assert len(axes) == len(df.columns) for ax in axes: self._check_text_labels(ax.texts, labels) self._check_colors(ax.patches, facecolors=color_args) def test_pie_df_nan(self): df = DataFrame(np.random.rand(4, 4)) for i in range(4): df.iloc[i, i] = np.nan fig, axes = self.plt.subplots(ncols=4) df.plot.pie(subplots=True, ax=axes, legend=True) base_expected = ["0", "1", "2", "3"] for i, ax in enumerate(axes): expected = list(base_expected) # force copy expected[i] = "" result = [x.get_text() for x in ax.texts] assert result == expected # legend labels # NaN's not included in legend with subplots # see https://github.com/pandas-dev/pandas/issues/8390 assert [x.get_text() for x in ax.get_legend().get_texts()] == base_expected[ :i ] + base_expected[i + 1 :] @pytest.mark.slow def test_errorbar_plot(self): with warnings.catch_warnings(): d = {"x": np.arange(12), "y": np.arange(12, 0, -1)} df = DataFrame(d) d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4} df_err = DataFrame(d_err) # check line plots ax = _check_plot_works(df.plot, yerr=df_err, logy=True) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=df_err, logx=True, logy=True) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=df_err, loglog=True) self._check_has_errorbars(ax, xerr=0, yerr=2) kinds = ["line", "bar", "barh"] for kind in kinds: ax = _check_plot_works(df.plot, yerr=df_err["x"], kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=d_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, yerr=df_err, xerr=df_err, kind=kind) self._check_has_errorbars(ax, xerr=2, yerr=2) ax = _check_plot_works( df.plot, yerr=df_err["x"], xerr=df_err["x"], kind=kind ) self._check_has_errorbars(ax, xerr=2, yerr=2) ax = _check_plot_works(df.plot, xerr=0.2, yerr=0.2, kind=kind) self._check_has_errorbars(ax, xerr=2, yerr=2) # _check_plot_works adds an ax so catch warning. see GH #13188 axes = _check_plot_works( df.plot, yerr=df_err, xerr=df_err, subplots=True, kind=kind ) self._check_has_errorbars(axes, xerr=1, yerr=1) ax = _check_plot_works( (df + 1).plot, yerr=df_err, xerr=df_err, kind="bar", log=True ) self._check_has_errorbars(ax, xerr=2, yerr=2) # yerr is raw error values ax = _check_plot_works(df["y"].plot, yerr=np.ones(12) * 0.4) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(df.plot, yerr=np.ones((2, 12)) * 0.4) self._check_has_errorbars(ax, xerr=0, yerr=2) # yerr is column name for yerr in ["yerr", "誤差"]: s_df = df.copy() s_df[yerr] = np.ones(12) * 0.2 ax = _check_plot_works(s_df.plot, yerr=yerr) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(s_df.plot, y="y", x="x", yerr=yerr) self._check_has_errorbars(ax, xerr=0, yerr=1) with pytest.raises(ValueError): df.plot(yerr=np.random.randn(11)) df_err = DataFrame({"x": ["zzz"] * 12, "y": ["zzz"] * 12}) with pytest.raises((ValueError, TypeError)): df.plot(yerr=df_err) @pytest.mark.xfail(reason="Iterator is consumed", raises=ValueError) @pytest.mark.slow def test_errorbar_plot_iterator(self): with warnings.catch_warnings(): d = {"x": np.arange(12), "y": np.arange(12, 0, -1)} df = DataFrame(d) # yerr is iterator ax = _check_plot_works(df.plot, yerr=itertools.repeat(0.1, len(df))) self._check_has_errorbars(ax, xerr=0, yerr=2) @pytest.mark.slow def test_errorbar_with_integer_column_names(self): # test with integer column names df = DataFrame(np.random.randn(10, 2)) df_err = DataFrame(np.random.randn(10, 2)) ax = _check_plot_works(df.plot, yerr=df_err) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(df.plot, y=0, yerr=1) self._check_has_errorbars(ax, xerr=0, yerr=1) @pytest.mark.slow def test_errorbar_with_partial_columns(self): df = DataFrame(np.random.randn(10, 3)) df_err = DataFrame(np.random.randn(10, 2), columns=[0, 2]) kinds = ["line", "bar"] for kind in kinds: ax = _check_plot_works(df.plot, yerr=df_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ix = date_range("1/1/2000", periods=10, freq="M") df.set_index(ix, inplace=True) df_err.set_index(ix, inplace=True) ax = _check_plot_works(df.plot, yerr=df_err, kind="line") self._check_has_errorbars(ax, xerr=0, yerr=2) d = {"x": np.arange(12), "y": np.arange(12, 0, -1)} df = DataFrame(d) d_err = {"x": np.ones(12) * 0.2, "z": np.ones(12) * 0.4} df_err = DataFrame(d_err) for err in [d_err, df_err]: ax = _check_plot_works(df.plot, yerr=err) self._check_has_errorbars(ax, xerr=0, yerr=1) @pytest.mark.slow def test_errorbar_timeseries(self): with warnings.catch_warnings(): d = {"x": np.arange(12), "y": np.arange(12, 0, -1)} d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4} # check time-series plots ix = date_range("1/1/2000", "1/1/2001", freq="M") tdf = DataFrame(d, index=ix) tdf_err = DataFrame(d_err, index=ix) kinds = ["line", "bar", "barh"] for kind in kinds: ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(tdf.plot, yerr=d_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) ax = _check_plot_works(tdf.plot, y="y", yerr=tdf_err["x"], kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(tdf.plot, y="y", yerr="x", kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=2) # _check_plot_works adds an ax so catch warning. see GH #13188 axes = _check_plot_works( tdf.plot, kind=kind, yerr=tdf_err, subplots=True ) self._check_has_errorbars(axes, xerr=0, yerr=1) def test_errorbar_asymmetrical(self): np.random.seed(0) err = np.random.rand(3, 2, 5) # each column is [0, 1, 2, 3, 4], [3, 4, 5, 6, 7]... df = DataFrame(np.arange(15).reshape(3, 5)).T ax = df.plot(yerr=err, xerr=err / 2) yerr_0_0 = ax.collections[1].get_paths()[0].vertices[:, 1] expected_0_0 = err[0, :, 0] * np.array([-1, 1]) tm.assert_almost_equal(yerr_0_0, expected_0_0) with pytest.raises(ValueError): df.plot(yerr=err.T) tm.close() def test_table(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, table=True) _check_plot_works(df.plot, table=df) ax = df.plot() assert len(ax.tables) == 0 plotting.table(ax, df.T) assert len(ax.tables) == 1 def test_errorbar_scatter(self): df = DataFrame(np.random.randn(5, 2), index=range(5), columns=["x", "y"]) df_err = DataFrame( np.random.randn(5, 2) / 5, index=range(5), columns=["x", "y"] ) ax = _check_plot_works(df.plot.scatter, x="x", y="y") self._check_has_errorbars(ax, xerr=0, yerr=0) ax = _check_plot_works(df.plot.scatter, x="x", y="y", xerr=df_err) self._check_has_errorbars(ax, xerr=1, yerr=0) ax = _check_plot_works(df.plot.scatter, x="x", y="y", yerr=df_err) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(df.plot.scatter, x="x", y="y", xerr=df_err, yerr=df_err) self._check_has_errorbars(ax, xerr=1, yerr=1) def _check_errorbar_color(containers, expected, has_err="has_xerr"): lines = [] errs = [c.lines for c in ax.containers if getattr(c, has_err, False)][0] for el in errs: if is_list_like(el): lines.extend(el) else: lines.append(el) err_lines = [x for x in lines if x in ax.collections] self._check_colors( err_lines, linecolors=np.array([expected] * len(err_lines)) ) # GH 8081 df = DataFrame(np.random.randn(10, 5), columns=["a", "b", "c", "d", "e"]) ax = df.plot.scatter(x="a", y="b", xerr="d", yerr="e", c="red") self._check_has_errorbars(ax, xerr=1, yerr=1) _check_errorbar_color(ax.containers, "red", has_err="has_xerr") _check_errorbar_color(ax.containers, "red", has_err="has_yerr") ax = df.plot.scatter(x="a", y="b", yerr="e", color="green") self._check_has_errorbars(ax, xerr=0, yerr=1) _check_errorbar_color(ax.containers, "green", has_err="has_yerr") @pytest.mark.slow def test_sharex_and_ax(self): # https://github.com/pandas-dev/pandas/issues/9737 using gridspec, # the axis in fig.get_axis() are sorted differently than pandas # expected them, so make sure that only the right ones are removed import matplotlib.pyplot as plt plt.close("all") gs, axes = _generate_4_axes_via_gridspec() df = DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [1, 2, 3, 4, 5, 6], "c": [1, 2, 3, 4, 5, 6], "d": [1, 2, 3, 4, 5, 6], } ) def _check(axes): for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) for ax in [axes[0], axes[2]]: self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) for ax in [axes[1], axes[3]]: self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) for ax in axes: df.plot(x="a", y="b", title="title", ax=ax, sharex=True) gs.tight_layout(plt.gcf()) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharex=True) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() # without sharex, no labels should be touched! for ax in axes: df.plot(x="a", y="b", title="title", ax=ax) gs.tight_layout(plt.gcf()) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() @pytest.mark.slow def test_sharey_and_ax(self): # https://github.com/pandas-dev/pandas/issues/9737 using gridspec, # the axis in fig.get_axis() are sorted differently than pandas # expected them, so make sure that only the right ones are removed import matplotlib.pyplot as plt gs, axes = _generate_4_axes_via_gridspec() df = DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [1, 2, 3, 4, 5, 6], "c": [1, 2, 3, 4, 5, 6], "d": [1, 2, 3, 4, 5, 6], } ) def _check(axes): for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) for ax in [axes[0], axes[1]]: self._check_visible(ax.get_yticklabels(), visible=True) for ax in [axes[2], axes[3]]: self._check_visible(ax.get_yticklabels(), visible=False) for ax in axes: df.plot(x="a", y="b", title="title", ax=ax, sharey=True) gs.tight_layout(plt.gcf()) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharey=True) gs.tight_layout(plt.gcf()) _check(axes) tm.close() gs, axes = _generate_4_axes_via_gridspec() # without sharex, no labels should be touched! for ax in axes: df.plot(x="a", y="b", title="title", ax=ax) gs.tight_layout(plt.gcf()) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) @td.skip_if_no_scipy def test_memory_leak(self): """ Check that every plot type gets properly collected. """ import weakref import gc results = {} for kind in plotting.PlotAccessor._all_kinds: args = {} if kind in ["hexbin", "scatter", "pie"]: df = self.hexbin_df args = {"x": "A", "y": "B"} elif kind == "area": df = self.tdf.abs() else: df = self.tdf # Use a weakref so we can see if the object gets collected without # also preventing it from being collected results[kind] = weakref.proxy(df.plot(kind=kind, **args)) # have matplotlib delete all the figures tm.close() # force a garbage collection gc.collect() for key in results: # check that every plot was collected with pytest.raises(ReferenceError): # need to actually access something to get an error results[key].lines @pytest.mark.slow def test_df_subplots_patterns_minorticks(self): # GH 10657 import matplotlib.pyplot as plt df = DataFrame( np.random.randn(10, 2), index=date_range("1/1/2000", periods=10), columns=list("AB"), ) # shared subplots fig, axes = plt.subplots(2, 1, sharex=True) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of 1st ax must be hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() fig, axes = plt.subplots(2, 1) with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharex=True) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of 1st ax must be hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() # not shared fig, axes = plt.subplots(2, 1) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() @pytest.mark.slow def test_df_gridspec_patterns(self): # GH 10819 import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec ts = Series(np.random.randn(10), index=date_range("1/1/2000", periods=10)) df = DataFrame(np.random.randn(10, 2), index=ts.index, columns=list("AB")) def _get_vertical_grid(): gs = gridspec.GridSpec(3, 1) fig = plt.figure() ax1 = fig.add_subplot(gs[:2, :]) ax2 = fig.add_subplot(gs[2, :]) return ax1, ax2 def _get_horizontal_grid(): gs = gridspec.GridSpec(1, 3) fig = plt.figure() ax1 = fig.add_subplot(gs[:, :2]) ax2 = fig.add_subplot(gs[:, 2]) return ax1, ax2 for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]: ax1 = ts.plot(ax=ax1) assert len(ax1.lines) == 1 ax2 = df.plot(ax=ax2) assert len(ax2.lines) == 2 for ax in [ax1, ax2]: self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() # subplots=True for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]: axes = df.plot(subplots=True, ax=[ax1, ax2]) assert len(ax1.lines) == 1 assert len(ax2.lines) == 1 for ax in axes: self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() # vertical / subplots / sharex=True / sharey=True ax1, ax2 = _get_vertical_grid() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True) assert len(axes[0].lines) == 1 assert len(axes[1].lines) == 1 for ax in [ax1, ax2]: # yaxis are visible because there is only one column self._check_visible(ax.get_yticklabels(), visible=True) # xaxis of axes0 (top) are hidden self._check_visible(axes[0].get_xticklabels(), visible=False) self._check_visible(axes[0].get_xticklabels(minor=True), visible=False) self._check_visible(axes[1].get_xticklabels(), visible=True) self._check_visible(axes[1].get_xticklabels(minor=True), visible=True) tm.close() # horizontal / subplots / sharex=True / sharey=True ax1, ax2 = _get_horizontal_grid() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True) assert len(axes[0].lines) == 1 assert len(axes[1].lines) == 1 self._check_visible(axes[0].get_yticklabels(), visible=True) # yaxis of axes1 (right) are hidden self._check_visible(axes[1].get_yticklabels(), visible=False) for ax in [ax1, ax2]: # xaxis are visible because there is only one column self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() # boxed def _get_boxed_grid(): gs = gridspec.GridSpec(3, 3) fig = plt.figure() ax1 = fig.add_subplot(gs[:2, :2]) ax2 = fig.add_subplot(gs[:2, 2]) ax3 = fig.add_subplot(gs[2, :2]) ax4 = fig.add_subplot(gs[2, 2]) return ax1, ax2, ax3, ax4 axes = _get_boxed_grid() df = DataFrame(np.random.randn(10, 4), index=ts.index, columns=list("ABCD")) axes = df.plot(subplots=True, ax=axes) for ax in axes: assert len(ax.lines) == 1 # axis are visible because these are not shared self._check_visible(ax.get_yticklabels(), visible=True) self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() # subplots / sharex=True / sharey=True axes = _get_boxed_grid() with tm.assert_produces_warning(UserWarning): axes = df.plot(subplots=True, ax=axes, sharex=True, sharey=True) for ax in axes: assert len(ax.lines) == 1 for ax in [axes[0], axes[2]]: # left column self._check_visible(ax.get_yticklabels(), visible=True) for ax in [axes[1], axes[3]]: # right column self._check_visible(ax.get_yticklabels(), visible=False) for ax in [axes[0], axes[1]]: # top row self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) for ax in [axes[2], axes[3]]: # bottom row self._check_visible(ax.get_xticklabels(), visible=True) self._check_visible(ax.get_xticklabels(minor=True), visible=True) tm.close() @pytest.mark.slow def test_df_grid_settings(self): # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792 self._check_grid_settings( DataFrame({"a": [1, 2, 3], "b": [2, 3, 4]}), plotting.PlotAccessor._dataframe_kinds, kws={"x": "a", "y": "b"}, ) def test_invalid_colormap(self): df = DataFrame(randn(3, 2), columns=["A", "B"]) with pytest.raises(ValueError): df.plot(colormap="invalid_colormap") def test_plain_axes(self): # supplied ax itself is a SubplotAxes, but figure contains also # a plain Axes object (GH11556) fig, ax = self.plt.subplots() fig.add_axes([0.2, 0.2, 0.2, 0.2]) Series(rand(10)).plot(ax=ax) # supplied ax itself is a plain Axes, but because the cmap keyword # a new ax is created for the colorbar -> also multiples axes (GH11520) df = DataFrame({"a": randn(8), "b": randn(8)}) fig = self.plt.figure() ax = fig.add_axes((0, 0, 1, 1)) df.plot(kind="scatter", ax=ax, x="a", y="b", c="a", cmap="hsv") # other examples fig, ax = self.plt.subplots() from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) Series(rand(10)).plot(ax=ax) Series(rand(10)).plot(ax=cax) fig, ax = self.plt.subplots() from mpl_toolkits.axes_grid1.inset_locator import inset_axes iax = inset_axes(ax, width="30%", height=1.0, loc=3) Series(rand(10)).plot(ax=ax) Series(rand(10)).plot(ax=iax) def test_passed_bar_colors(self): import matplotlib as mpl color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)] colormap = mpl.colors.ListedColormap(color_tuples) barplot = pd.DataFrame([[1, 2, 3]]).plot(kind="bar", cmap=colormap) assert color_tuples == [c.get_facecolor() for c in barplot.patches] def test_rcParams_bar_colors(self): import matplotlib as mpl color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)] with mpl.rc_context(rc={"axes.prop_cycle": mpl.cycler("color", color_tuples)}): barplot = pd.DataFrame([[1, 2, 3]]).plot(kind="bar") assert color_tuples == [c.get_facecolor() for c in barplot.patches] @pytest.mark.parametrize("method", ["line", "barh", "bar"]) def test_secondary_axis_font_size(self, method): # GH: 12565 df = ( pd.DataFrame(np.random.randn(15, 2), columns=list("AB")) .assign(C=lambda df: df.B.cumsum()) .assign(D=lambda df: df.C * 1.1) ) fontsize = 20 sy = ["C", "D"] kwargs = dict(secondary_y=sy, fontsize=fontsize, mark_right=True) ax = getattr(df.plot, method)(**kwargs) self._check_ticks_props(axes=ax.right_ax, ylabelsize=fontsize) @pytest.mark.slow def test_x_string_values_ticks(self): # Test if string plot index have a fixed xtick position # GH: 7612, GH: 22334 df = pd.DataFrame( { "sales": [3, 2, 3], "visits": [20, 42, 28], "day": ["Monday", "Tuesday", "Wednesday"], } ) ax = df.plot.area(x="day") ax.set_xlim(-1, 3) xticklabels = [t.get_text() for t in ax.get_xticklabels()] labels_position = dict(zip(xticklabels, ax.get_xticks())) # Testing if the label stayed at the right position assert labels_position["Monday"] == 0.0 assert labels_position["Tuesday"] == 1.0 assert labels_position["Wednesday"] == 2.0 @pytest.mark.slow def test_x_multiindex_values_ticks(self): # Test if multiindex plot index have a fixed xtick position # GH: 15912 index = pd.MultiIndex.from_product([[2012, 2013], [1, 2]]) df = pd.DataFrame(np.random.randn(4, 2), columns=["A", "B"], index=index) ax = df.plot() ax.set_xlim(-1, 4) xticklabels = [t.get_text() for t in ax.get_xticklabels()] labels_position = dict(zip(xticklabels, ax.get_xticks())) # Testing if the label stayed at the right position assert labels_position["(2012, 1)"] == 0.0 assert labels_position["(2012, 2)"] == 1.0 assert labels_position["(2013, 1)"] == 2.0 assert labels_position["(2013, 2)"] == 3.0 @pytest.mark.parametrize("kind", ["line", "area"]) def test_xlim_plot_line(self, kind): # test if xlim is set correctly in plot.line and plot.area # GH 27686 df = pd.DataFrame([2, 4], index=[1, 2]) ax = df.plot(kind=kind) xlims = ax.get_xlim() assert xlims[0] < 1 assert xlims[1] > 2 def test_xlim_plot_line_correctly_in_mixed_plot_type(self): # test if xlim is set correctly when ax contains multiple different kinds # of plots, GH 27686 fig, ax = self.plt.subplots() indexes = ["k1", "k2", "k3", "k4"] df = pd.DataFrame( { "s1": [1000, 2000, 1500, 2000], "s2": [900, 1400, 2000, 3000], "s3": [1500, 1500, 1600, 1200], "secondary_y": [1, 3, 4, 3], }, index=indexes, ) df[["s1", "s2", "s3"]].plot.bar(ax=ax, stacked=False) df[["secondary_y"]].plot(ax=ax, secondary_y=True) xlims = ax.get_xlim() assert xlims[0] < 0 assert xlims[1] > 3 # make sure axis labels are plotted correctly as well xticklabels = [t.get_text() for t in ax.get_xticklabels()] assert xticklabels == indexes def test_subplots_sharex_false(self): # test when sharex is set to False, two plots should have different # labels, GH 25160 df = pd.DataFrame(np.random.rand(10, 2)) df.iloc[5:, 1] = np.nan df.iloc[:5, 0] = np.nan figs, axs = self.plt.subplots(2, 1) df.plot.line(ax=axs, subplots=True, sharex=False) expected_ax1 = np.arange(4.5, 10, 0.5) expected_ax2 = np.arange(-0.5, 5, 0.5) tm.assert_numpy_array_equal(axs[0].get_xticks(), expected_ax1) tm.assert_numpy_array_equal(axs[1].get_xticks(), expected_ax2) def test_plot_no_rows(self): # GH 27758 df = pd.DataFrame(columns=["foo"], dtype=int) assert df.empty ax = df.plot() assert len(ax.get_lines()) == 1 line = ax.get_lines()[0] assert len(line.get_xdata()) == 0 assert len(line.get_ydata()) == 0 def test_plot_no_numeric_data(self): df = pd.DataFrame(["a", "b", "c"]) with pytest.raises(TypeError): df.plot() def test_missing_markers_legend(self): # 14958 df = pd.DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"]) ax = df.plot(y=["A"], marker="x", linestyle="solid") df.plot(y=["B"], marker="o", linestyle="dotted", ax=ax) df.plot(y=["C"], marker="<", linestyle="dotted", ax=ax) self._check_legend_labels(ax, labels=["A", "B", "C"]) self._check_legend_marker(ax, expected_markers=["x", "o", "<"]) def test_missing_markers_legend_using_style(self): # 14563 df = pd.DataFrame( { "A": [1, 2, 3, 4, 5, 6], "B": [2, 4, 1, 3, 2, 4], "C": [3, 3, 2, 6, 4, 2], "X": [1, 2, 3, 4, 5, 6], } ) fig, ax = self.plt.subplots() for kind in "ABC": df.plot("X", kind, label=kind, ax=ax, style=".") self._check_legend_labels(ax, labels=["A", "B", "C"]) self._check_legend_marker(ax, expected_markers=[".", ".", "."]) def _generate_4_axes_via_gridspec(): import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.gridspec # noqa gs = mpl.gridspec.GridSpec(2, 2) ax_tl = plt.subplot(gs[0, 0]) ax_ll = plt.subplot(gs[1, 0]) ax_tr = plt.subplot(gs[0, 1]) ax_lr = plt.subplot(gs[1, 1]) return gs, [ax_tl, ax_ll, ax_tr, ax_lr]