# coding: utf-8 """ Test cases for GroupBy.plot """ import numpy as np import pandas.util._test_decorators as td from pandas import DataFrame, Series import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase @td.skip_if_no_mpl class TestDataFrameGroupByPlots(TestPlotBase): def test_series_groupby_plotting_nominally_works(self): n = 10 weight = Series(np.random.normal(166, 20, size=n)) height = Series(np.random.normal(60, 10, size=n)) with tm.RNGContext(42): gender = np.random.choice(["male", "female"], size=n) weight.groupby(gender).plot() tm.close() height.groupby(gender).hist() tm.close() # Regression test for GH8733 height.groupby(gender).plot(alpha=0.5) tm.close() def test_plotting_with_float_index_works(self): # GH 7025 df = DataFrame( {"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)}, index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], ) df.groupby("def")["val"].plot() tm.close() df.groupby("def")["val"].apply(lambda x: x.plot()) tm.close() def test_hist_single_row(self): # GH10214 bins = np.arange(80, 100 + 2, 1) df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]}) df["Mark"].hist(by=df["ByCol"], bins=bins) df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]}) df["Mark"].hist(by=df["ByCol"], bins=bins) def test_plot_submethod_works(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) df.groupby("z").plot.scatter("x", "y") tm.close() df.groupby("z")["x"].plot.line() tm.close() def test_plot_kwargs(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) res = df.groupby("z").plot(kind="scatter", x="x", y="y") # check that a scatter plot is effectively plotted: the axes should # contain a PathCollection from the scatter plot (GH11805) assert len(res["a"].collections) == 1 res = df.groupby("z").plot.scatter(x="x", y="y") assert len(res["a"].collections) == 1