import operator import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm class TestSeriesAnalytics: def test_prod_numpy16_bug(self): s = Series([1.0, 1.0, 1.0], index=range(3)) result = s.prod() assert not isinstance(result, Series) def test_dot(self): a = Series(np.random.randn(4), index=["p", "q", "r", "s"]) b = DataFrame( np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"] ).T result = a.dot(b) expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"]) tm.assert_series_equal(result, expected) # Check index alignment b2 = b.reindex(index=reversed(b.index)) result = a.dot(b) tm.assert_series_equal(result, expected) # Check ndarray argument result = a.dot(b.values) assert np.all(result == expected.values) tm.assert_almost_equal(a.dot(b["2"].values), expected["2"]) # Check series argument tm.assert_almost_equal(a.dot(b["1"]), expected["1"]) tm.assert_almost_equal(a.dot(b2["1"]), expected["1"]) msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)" # exception raised is of type Exception with pytest.raises(Exception, match=msg): a.dot(a.values[:3]) msg = "matrices are not aligned" with pytest.raises(ValueError, match=msg): a.dot(b.T) def test_matmul(self): # matmul test is for GH #10259 a = Series(np.random.randn(4), index=["p", "q", "r", "s"]) b = DataFrame( np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"] ).T # Series @ DataFrame -> Series result = operator.matmul(a, b) expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"]) tm.assert_series_equal(result, expected) # DataFrame @ Series -> Series result = operator.matmul(b.T, a) expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) tm.assert_series_equal(result, expected) # Series @ Series -> scalar result = operator.matmul(a, a) expected = np.dot(a.values, a.values) tm.assert_almost_equal(result, expected) # GH 21530 # vector (1D np.array) @ Series (__rmatmul__) result = operator.matmul(a.values, a) expected = np.dot(a.values, a.values) tm.assert_almost_equal(result, expected) # GH 21530 # vector (1D list) @ Series (__rmatmul__) result = operator.matmul(a.values.tolist(), a) expected = np.dot(a.values, a.values) tm.assert_almost_equal(result, expected) # GH 21530 # matrix (2D np.array) @ Series (__rmatmul__) result = operator.matmul(b.T.values, a) expected = np.dot(b.T.values, a.values) tm.assert_almost_equal(result, expected) # GH 21530 # matrix (2D nested lists) @ Series (__rmatmul__) result = operator.matmul(b.T.values.tolist(), a) expected = np.dot(b.T.values, a.values) tm.assert_almost_equal(result, expected) # mixed dtype DataFrame @ Series a["p"] = int(a.p) result = operator.matmul(b.T, a) expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) tm.assert_series_equal(result, expected) # different dtypes DataFrame @ Series a = a.astype(int) result = operator.matmul(b.T, a) expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) tm.assert_series_equal(result, expected) msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)" # exception raised is of type Exception with pytest.raises(Exception, match=msg): a.dot(a.values[:3]) msg = "matrices are not aligned" with pytest.raises(ValueError, match=msg): a.dot(b.T) def test_ptp(self): # GH21614 N = 1000 arr = np.random.randn(N) ser = Series(arr) assert np.ptp(ser) == np.ptp(arr) def test_repeat(self): s = Series(np.random.randn(3), index=["a", "b", "c"]) reps = s.repeat(5) exp = Series(s.values.repeat(5), index=s.index.values.repeat(5)) tm.assert_series_equal(reps, exp) to_rep = [2, 3, 4] reps = s.repeat(to_rep) exp = Series(s.values.repeat(to_rep), index=s.index.values.repeat(to_rep)) tm.assert_series_equal(reps, exp) def test_numpy_repeat(self): s = Series(np.arange(3), name="x") expected = Series(s.values.repeat(2), name="x", index=s.index.values.repeat(2)) tm.assert_series_equal(np.repeat(s, 2), expected) msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.repeat(s, 2, axis=0) def test_is_monotonic(self): s = Series(np.random.randint(0, 10, size=1000)) assert not s.is_monotonic s = Series(np.arange(1000)) assert s.is_monotonic is True assert s.is_monotonic_increasing is True s = Series(np.arange(1000, 0, -1)) assert s.is_monotonic_decreasing is True s = Series(pd.date_range("20130101", periods=10)) assert s.is_monotonic is True assert s.is_monotonic_increasing is True s = Series(list(reversed(s.tolist()))) assert s.is_monotonic is False assert s.is_monotonic_decreasing is True def test_unstack(self): index = MultiIndex( levels=[["bar", "foo"], ["one", "three", "two"]], codes=[[1, 1, 0, 0], [0, 1, 0, 2]], ) s = Series(np.arange(4.0), index=index) unstacked = s.unstack() expected = DataFrame( [[2.0, np.nan, 3.0], [0.0, 1.0, np.nan]], index=["bar", "foo"], columns=["one", "three", "two"], ) tm.assert_frame_equal(unstacked, expected) unstacked = s.unstack(level=0) tm.assert_frame_equal(unstacked, expected.T) index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], ) s = Series(np.random.randn(6), index=index) exp_index = MultiIndex( levels=[["one", "two", "three"], [0, 1]], codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], ) expected = DataFrame({"bar": s.values}, index=exp_index).sort_index(level=0) unstacked = s.unstack(0).sort_index() tm.assert_frame_equal(unstacked, expected) # GH5873 idx = pd.MultiIndex.from_arrays([[101, 102], [3.5, np.nan]]) ts = pd.Series([1, 2], index=idx) left = ts.unstack() right = DataFrame( [[np.nan, 1], [2, np.nan]], index=[101, 102], columns=[np.nan, 3.5] ) tm.assert_frame_equal(left, right) idx = pd.MultiIndex.from_arrays( [ ["cat", "cat", "cat", "dog", "dog"], ["a", "a", "b", "a", "b"], [1, 2, 1, 1, np.nan], ] ) ts = pd.Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx) right = DataFrame( [[1.0, 1.3], [1.1, np.nan], [np.nan, 1.4], [1.2, np.nan]], columns=["cat", "dog"], ) tpls = [("a", 1), ("a", 2), ("b", np.nan), ("b", 1)] right.index = pd.MultiIndex.from_tuples(tpls) tm.assert_frame_equal(ts.unstack(level=0), right) @pytest.mark.parametrize("func", [np.any, np.all]) @pytest.mark.parametrize("kwargs", [dict(keepdims=True), dict(out=object())]) @td.skip_if_np_lt("1.15") def test_validate_any_all_out_keepdims_raises(self, kwargs, func): s = pd.Series([1, 2]) param = list(kwargs)[0] name = func.__name__ msg = ( r"the '{arg}' parameter is not " r"supported in the pandas " r"implementation of {fname}\(\)" ).format(arg=param, fname=name) with pytest.raises(ValueError, match=msg): func(s, **kwargs) @td.skip_if_np_lt("1.15") def test_validate_sum_initial(self): s = pd.Series([1, 2]) msg = ( r"the 'initial' parameter is not " r"supported in the pandas " r"implementation of sum\(\)" ) with pytest.raises(ValueError, match=msg): np.sum(s, initial=10) def test_validate_median_initial(self): s = pd.Series([1, 2]) msg = ( r"the 'overwrite_input' parameter is not " r"supported in the pandas " r"implementation of median\(\)" ) with pytest.raises(ValueError, match=msg): # It seems like np.median doesn't dispatch, so we use the # method instead of the ufunc. s.median(overwrite_input=True) @td.skip_if_np_lt("1.15") def test_validate_stat_keepdims(self): s = pd.Series([1, 2]) msg = ( r"the 'keepdims' parameter is not " r"supported in the pandas " r"implementation of sum\(\)" ) with pytest.raises(ValueError, match=msg): np.sum(s, keepdims=True)