import operator

import numpy as np
import pytest

import pandas.util._test_decorators as td

import pandas as pd
from pandas import DataFrame, MultiIndex, Series
import pandas._testing as tm


class TestSeriesAnalytics:
    def test_prod_numpy16_bug(self):
        s = Series([1.0, 1.0, 1.0], index=range(3))
        result = s.prod()

        assert not isinstance(result, Series)

    def test_dot(self):
        a = Series(np.random.randn(4), index=["p", "q", "r", "s"])
        b = DataFrame(
            np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"]
        ).T

        result = a.dot(b)
        expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        # Check index alignment
        b2 = b.reindex(index=reversed(b.index))
        result = a.dot(b)
        tm.assert_series_equal(result, expected)

        # Check ndarray argument
        result = a.dot(b.values)
        assert np.all(result == expected.values)
        tm.assert_almost_equal(a.dot(b["2"].values), expected["2"])

        # Check series argument
        tm.assert_almost_equal(a.dot(b["1"]), expected["1"])
        tm.assert_almost_equal(a.dot(b2["1"]), expected["1"])

        msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)"
        # exception raised is of type Exception
        with pytest.raises(Exception, match=msg):
            a.dot(a.values[:3])
        msg = "matrices are not aligned"
        with pytest.raises(ValueError, match=msg):
            a.dot(b.T)

    def test_matmul(self):
        # matmul test is for GH #10259
        a = Series(np.random.randn(4), index=["p", "q", "r", "s"])
        b = DataFrame(
            np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"]
        ).T

        # Series @ DataFrame -> Series
        result = operator.matmul(a, b)
        expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        # DataFrame @ Series -> Series
        result = operator.matmul(b.T, a)
        expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        # Series @ Series -> scalar
        result = operator.matmul(a, a)
        expected = np.dot(a.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # vector (1D np.array) @ Series (__rmatmul__)
        result = operator.matmul(a.values, a)
        expected = np.dot(a.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # vector (1D list) @ Series (__rmatmul__)
        result = operator.matmul(a.values.tolist(), a)
        expected = np.dot(a.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # matrix (2D np.array) @ Series (__rmatmul__)
        result = operator.matmul(b.T.values, a)
        expected = np.dot(b.T.values, a.values)
        tm.assert_almost_equal(result, expected)

        # GH 21530
        # matrix (2D nested lists) @ Series (__rmatmul__)
        result = operator.matmul(b.T.values.tolist(), a)
        expected = np.dot(b.T.values, a.values)
        tm.assert_almost_equal(result, expected)

        # mixed dtype DataFrame @ Series
        a["p"] = int(a.p)
        result = operator.matmul(b.T, a)
        expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        # different dtypes DataFrame @ Series
        a = a.astype(int)
        result = operator.matmul(b.T, a)
        expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
        tm.assert_series_equal(result, expected)

        msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)"
        # exception raised is of type Exception
        with pytest.raises(Exception, match=msg):
            a.dot(a.values[:3])
        msg = "matrices are not aligned"
        with pytest.raises(ValueError, match=msg):
            a.dot(b.T)

    def test_ptp(self):
        # GH21614
        N = 1000
        arr = np.random.randn(N)
        ser = Series(arr)
        assert np.ptp(ser) == np.ptp(arr)

    def test_repeat(self):
        s = Series(np.random.randn(3), index=["a", "b", "c"])

        reps = s.repeat(5)
        exp = Series(s.values.repeat(5), index=s.index.values.repeat(5))
        tm.assert_series_equal(reps, exp)

        to_rep = [2, 3, 4]
        reps = s.repeat(to_rep)
        exp = Series(s.values.repeat(to_rep), index=s.index.values.repeat(to_rep))
        tm.assert_series_equal(reps, exp)

    def test_numpy_repeat(self):
        s = Series(np.arange(3), name="x")
        expected = Series(s.values.repeat(2), name="x", index=s.index.values.repeat(2))
        tm.assert_series_equal(np.repeat(s, 2), expected)

        msg = "the 'axis' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.repeat(s, 2, axis=0)

    def test_is_monotonic(self):

        s = Series(np.random.randint(0, 10, size=1000))
        assert not s.is_monotonic
        s = Series(np.arange(1000))
        assert s.is_monotonic is True
        assert s.is_monotonic_increasing is True
        s = Series(np.arange(1000, 0, -1))
        assert s.is_monotonic_decreasing is True

        s = Series(pd.date_range("20130101", periods=10))
        assert s.is_monotonic is True
        assert s.is_monotonic_increasing is True
        s = Series(list(reversed(s.tolist())))
        assert s.is_monotonic is False
        assert s.is_monotonic_decreasing is True

    def test_unstack(self):

        index = MultiIndex(
            levels=[["bar", "foo"], ["one", "three", "two"]],
            codes=[[1, 1, 0, 0], [0, 1, 0, 2]],
        )

        s = Series(np.arange(4.0), index=index)
        unstacked = s.unstack()

        expected = DataFrame(
            [[2.0, np.nan, 3.0], [0.0, 1.0, np.nan]],
            index=["bar", "foo"],
            columns=["one", "three", "two"],
        )

        tm.assert_frame_equal(unstacked, expected)

        unstacked = s.unstack(level=0)
        tm.assert_frame_equal(unstacked, expected.T)

        index = MultiIndex(
            levels=[["bar"], ["one", "two", "three"], [0, 1]],
            codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]],
        )
        s = Series(np.random.randn(6), index=index)
        exp_index = MultiIndex(
            levels=[["one", "two", "three"], [0, 1]],
            codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]],
        )
        expected = DataFrame({"bar": s.values}, index=exp_index).sort_index(level=0)
        unstacked = s.unstack(0).sort_index()
        tm.assert_frame_equal(unstacked, expected)

        # GH5873
        idx = pd.MultiIndex.from_arrays([[101, 102], [3.5, np.nan]])
        ts = pd.Series([1, 2], index=idx)
        left = ts.unstack()
        right = DataFrame(
            [[np.nan, 1], [2, np.nan]], index=[101, 102], columns=[np.nan, 3.5]
        )
        tm.assert_frame_equal(left, right)

        idx = pd.MultiIndex.from_arrays(
            [
                ["cat", "cat", "cat", "dog", "dog"],
                ["a", "a", "b", "a", "b"],
                [1, 2, 1, 1, np.nan],
            ]
        )
        ts = pd.Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx)
        right = DataFrame(
            [[1.0, 1.3], [1.1, np.nan], [np.nan, 1.4], [1.2, np.nan]],
            columns=["cat", "dog"],
        )
        tpls = [("a", 1), ("a", 2), ("b", np.nan), ("b", 1)]
        right.index = pd.MultiIndex.from_tuples(tpls)
        tm.assert_frame_equal(ts.unstack(level=0), right)

    @pytest.mark.parametrize("func", [np.any, np.all])
    @pytest.mark.parametrize("kwargs", [dict(keepdims=True), dict(out=object())])
    @td.skip_if_np_lt("1.15")
    def test_validate_any_all_out_keepdims_raises(self, kwargs, func):
        s = pd.Series([1, 2])
        param = list(kwargs)[0]
        name = func.__name__

        msg = (
            r"the '{arg}' parameter is not "
            r"supported in the pandas "
            r"implementation of {fname}\(\)"
        ).format(arg=param, fname=name)
        with pytest.raises(ValueError, match=msg):
            func(s, **kwargs)

    @td.skip_if_np_lt("1.15")
    def test_validate_sum_initial(self):
        s = pd.Series([1, 2])
        msg = (
            r"the 'initial' parameter is not "
            r"supported in the pandas "
            r"implementation of sum\(\)"
        )
        with pytest.raises(ValueError, match=msg):
            np.sum(s, initial=10)

    def test_validate_median_initial(self):
        s = pd.Series([1, 2])
        msg = (
            r"the 'overwrite_input' parameter is not "
            r"supported in the pandas "
            r"implementation of median\(\)"
        )
        with pytest.raises(ValueError, match=msg):
            # It seems like np.median doesn't dispatch, so we use the
            # method instead of the ufunc.
            s.median(overwrite_input=True)

    @td.skip_if_np_lt("1.15")
    def test_validate_stat_keepdims(self):
        s = pd.Series([1, 2])
        msg = (
            r"the 'keepdims' parameter is not "
            r"supported in the pandas "
            r"implementation of sum\(\)"
        )
        with pytest.raises(ValueError, match=msg):
            np.sum(s, keepdims=True)