import numpy as np import pytest import pandas.util._test_decorators as td from pandas import Series import pandas._testing as tm @td.skip_if_no("numba", "0.46.0") @pytest.mark.filterwarnings("ignore:\\nThe keyword argument") # Filter warnings when parallel=True and the function can't be parallelized by Numba class TestApply: @pytest.mark.parametrize("jit", [True, False]) def test_numba_vs_cython(self, jit, nogil, parallel, nopython): def f(x, *args): arg_sum = 0 for arg in args: arg_sum += arg return np.mean(x) + arg_sum if jit: import numba f = numba.jit(f) engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} args = (2,) s = Series(range(10)) result = s.rolling(2).apply( f, args=args, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = s.rolling(2).apply(f, engine="cython", args=args, raw=True) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("jit", [True, False]) def test_cache(self, jit, nogil, parallel, nopython): # Test that the functions are cached correctly if we switch functions def func_1(x): return np.mean(x) + 4 def func_2(x): return np.std(x) * 5 if jit: import numba func_1 = numba.jit(func_1) func_2 = numba.jit(func_2) engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} roll = Series(range(10)).rolling(2) result = roll.apply( func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = roll.apply(func_1, engine="cython", raw=True) tm.assert_series_equal(result, expected) # func_1 should be in the cache now assert func_1 in roll._numba_func_cache result = roll.apply( func_2, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = roll.apply(func_2, engine="cython", raw=True) tm.assert_series_equal(result, expected) # This run should use the cached func_1 result = roll.apply( func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = roll.apply(func_1, engine="cython", raw=True) tm.assert_series_equal(result, expected)