from datetime import timedelta import re from typing import Dict, Optional import warnings import numpy as np from pytz import AmbiguousTimeError from pandas._libs.algos import unique_deltas from pandas._libs.tslibs import Timedelta, Timestamp from pandas._libs.tslibs.ccalendar import MONTH_ALIASES, int_to_weekday from pandas._libs.tslibs.fields import build_field_sarray import pandas._libs.tslibs.frequencies as libfreqs from pandas._libs.tslibs.offsets import _offset_to_period_map import pandas._libs.tslibs.resolution as libresolution from pandas._libs.tslibs.resolution import Resolution from pandas._libs.tslibs.timezones import UTC from pandas._libs.tslibs.tzconversion import tz_convert from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( is_datetime64_dtype, is_period_arraylike, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.algorithms import unique from pandas.tseries.offsets import ( DateOffset, Day, Hour, Micro, Milli, Minute, Nano, Second, prefix_mapping, ) _ONE_MICRO = 1000 _ONE_MILLI = _ONE_MICRO * 1000 _ONE_SECOND = _ONE_MILLI * 1000 _ONE_MINUTE = 60 * _ONE_SECOND _ONE_HOUR = 60 * _ONE_MINUTE _ONE_DAY = 24 * _ONE_HOUR # --------------------------------------------------------------------- # Offset names ("time rules") and related functions #: cache of previously seen offsets _offset_map: Dict[str, DateOffset] = {} def get_period_alias(offset_str: str) -> Optional[str]: """ Alias to closest period strings BQ->Q etc. """ return _offset_to_period_map.get(offset_str, None) _name_to_offset_map = { "days": Day(1), "hours": Hour(1), "minutes": Minute(1), "seconds": Second(1), "milliseconds": Milli(1), "microseconds": Micro(1), "nanoseconds": Nano(1), } def to_offset(freq) -> Optional[DateOffset]: """ Return DateOffset object from string or tuple representation or datetime.timedelta object. Parameters ---------- freq : str, tuple, datetime.timedelta, DateOffset or None Returns ------- DateOffset None if freq is None. Raises ------ ValueError If freq is an invalid frequency See Also -------- DateOffset Examples -------- >>> to_offset('5min') <5 * Minutes> >>> to_offset('1D1H') <25 * Hours> >>> to_offset(('W', 2)) <2 * Weeks: weekday=6> >>> to_offset((2, 'B')) <2 * BusinessDays> >>> to_offset(datetime.timedelta(days=1)) >>> to_offset(Hour()) """ if freq is None: return None if isinstance(freq, DateOffset): return freq if isinstance(freq, tuple): name = freq[0] stride = freq[1] if isinstance(stride, str): name, stride = stride, name name, _ = libfreqs._base_and_stride(name) delta = _get_offset(name) * stride elif isinstance(freq, timedelta): delta = None freq = Timedelta(freq) try: for name in freq.components._fields: offset = _name_to_offset_map[name] stride = getattr(freq.components, name) if stride != 0: offset = stride * offset if delta is None: delta = offset else: delta = delta + offset except ValueError: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) else: delta = None stride_sign = None try: splitted = re.split(libfreqs.opattern, freq) if splitted[-1] != "" and not splitted[-1].isspace(): # the last element must be blank raise ValueError("last element must be blank") for sep, stride, name in zip( splitted[0::4], splitted[1::4], splitted[2::4] ): if sep != "" and not sep.isspace(): raise ValueError("separator must be spaces") prefix = libfreqs._lite_rule_alias.get(name) or name if stride_sign is None: stride_sign = -1 if stride.startswith("-") else 1 if not stride: stride = 1 if prefix in Resolution._reso_str_bump_map.keys(): stride, name = Resolution.get_stride_from_decimal( float(stride), prefix ) stride = int(stride) offset = _get_offset(name) offset = offset * int(np.fabs(stride) * stride_sign) if delta is None: delta = offset else: delta = delta + offset except (ValueError, TypeError): raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) if delta is None: raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq)) return delta def get_offset(name: str) -> DateOffset: """ Return DateOffset object associated with rule name. .. deprecated:: 1.0.0 Examples -------- get_offset('EOM') --> BMonthEnd(1) """ warnings.warn( "get_offset is deprecated and will be removed in a future version, " "use to_offset instead", FutureWarning, stacklevel=2, ) return _get_offset(name) def _get_offset(name: str) -> DateOffset: """ Return DateOffset object associated with rule name. Examples -------- _get_offset('EOM') --> BMonthEnd(1) """ if name not in libfreqs._dont_uppercase: name = name.upper() name = libfreqs._lite_rule_alias.get(name, name) name = libfreqs._lite_rule_alias.get(name.lower(), name) else: name = libfreqs._lite_rule_alias.get(name, name) if name not in _offset_map: try: split = name.split("-") klass = prefix_mapping[split[0]] # handles case where there's no suffix (and will TypeError if too # many '-') offset = klass._from_name(*split[1:]) except (ValueError, TypeError, KeyError): # bad prefix or suffix raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(name)) # cache _offset_map[name] = offset return _offset_map[name] # --------------------------------------------------------------------- # Period codes def infer_freq(index, warn: bool = True) -> Optional[str]: """ Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed. Parameters ---------- index : DatetimeIndex or TimedeltaIndex If passed a Series will use the values of the series (NOT THE INDEX). warn : bool, default True Returns ------- str or None None if no discernible frequency TypeError if the index is not datetime-like ValueError if there are less than three values. """ import pandas as pd if isinstance(index, ABCSeries): values = index._values if not ( is_datetime64_dtype(values) or is_timedelta64_dtype(values) or values.dtype == object ): raise TypeError( "cannot infer freq from a non-convertible dtype " f"on a Series of {index.dtype}" ) index = values inferer: _FrequencyInferer if is_period_arraylike(index): raise TypeError( "PeriodIndex given. Check the `freq` attribute " "instead of using infer_freq." ) elif is_timedelta64_dtype(index): # Allow TimedeltaIndex and TimedeltaArray inferer = _TimedeltaFrequencyInferer(index, warn=warn) return inferer.get_freq() if isinstance(index, pd.Index) and not isinstance(index, pd.DatetimeIndex): if isinstance(index, (pd.Int64Index, pd.Float64Index)): raise TypeError( f"cannot infer freq from a non-convertible index type {type(index)}" ) index = index.values if not isinstance(index, pd.DatetimeIndex): try: index = pd.DatetimeIndex(index) except AmbiguousTimeError: index = pd.DatetimeIndex(index.asi8) inferer = _FrequencyInferer(index, warn=warn) return inferer.get_freq() class _FrequencyInferer: """ Not sure if I can avoid the state machine here """ def __init__(self, index, warn: bool = True): self.index = index self.values = index.asi8 # This moves the values, which are implicitly in UTC, to the # the timezone so they are in local time if hasattr(index, "tz"): if index.tz is not None: self.values = tz_convert(self.values, UTC, index.tz) self.warn = warn if len(index) < 3: raise ValueError("Need at least 3 dates to infer frequency") self.is_monotonic = ( self.index._is_monotonic_increasing or self.index._is_monotonic_decreasing ) @cache_readonly def deltas(self): return unique_deltas(self.values) @cache_readonly def deltas_asi8(self): return unique_deltas(self.index.asi8) @cache_readonly def is_unique(self) -> bool: return len(self.deltas) == 1 @cache_readonly def is_unique_asi8(self): return len(self.deltas_asi8) == 1 def get_freq(self) -> Optional[str]: """ Find the appropriate frequency string to describe the inferred frequency of self.values Returns ------- str or None """ if not self.is_monotonic or not self.index._is_unique: return None delta = self.deltas[0] if _is_multiple(delta, _ONE_DAY): return self._infer_daily_rule() # Business hourly, maybe. 17: one day / 65: one weekend if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]): return "BH" # Possibly intraday frequency. Here we use the # original .asi8 values as the modified values # will not work around DST transitions. See #8772 elif not self.is_unique_asi8: return None delta = self.deltas_asi8[0] if _is_multiple(delta, _ONE_HOUR): # Hours return _maybe_add_count("H", delta / _ONE_HOUR) elif _is_multiple(delta, _ONE_MINUTE): # Minutes return _maybe_add_count("T", delta / _ONE_MINUTE) elif _is_multiple(delta, _ONE_SECOND): # Seconds return _maybe_add_count("S", delta / _ONE_SECOND) elif _is_multiple(delta, _ONE_MILLI): # Milliseconds return _maybe_add_count("L", delta / _ONE_MILLI) elif _is_multiple(delta, _ONE_MICRO): # Microseconds return _maybe_add_count("U", delta / _ONE_MICRO) else: # Nanoseconds return _maybe_add_count("N", delta) @cache_readonly def day_deltas(self): return [x / _ONE_DAY for x in self.deltas] @cache_readonly def hour_deltas(self): return [x / _ONE_HOUR for x in self.deltas] @cache_readonly def fields(self): return build_field_sarray(self.values) @cache_readonly def rep_stamp(self): return Timestamp(self.values[0]) def month_position_check(self): return libresolution.month_position_check(self.fields, self.index.dayofweek) @cache_readonly def mdiffs(self): nmonths = self.fields["Y"] * 12 + self.fields["M"] return unique_deltas(nmonths.astype("i8")) @cache_readonly def ydiffs(self): return unique_deltas(self.fields["Y"].astype("i8")) def _infer_daily_rule(self) -> Optional[str]: annual_rule = self._get_annual_rule() if annual_rule: nyears = self.ydiffs[0] month = MONTH_ALIASES[self.rep_stamp.month] alias = f"{annual_rule}-{month}" return _maybe_add_count(alias, nyears) quarterly_rule = self._get_quarterly_rule() if quarterly_rule: nquarters = self.mdiffs[0] / 3 mod_dict = {0: 12, 2: 11, 1: 10} month = MONTH_ALIASES[mod_dict[self.rep_stamp.month % 3]] alias = f"{quarterly_rule}-{month}" return _maybe_add_count(alias, nquarters) monthly_rule = self._get_monthly_rule() if monthly_rule: return _maybe_add_count(monthly_rule, self.mdiffs[0]) if self.is_unique: days = self.deltas[0] / _ONE_DAY if days % 7 == 0: # Weekly day = int_to_weekday[self.rep_stamp.weekday()] return _maybe_add_count(f"W-{day}", days / 7) else: return _maybe_add_count("D", days) if self._is_business_daily(): return "B" wom_rule = self._get_wom_rule() if wom_rule: return wom_rule return None def _get_annual_rule(self) -> Optional[str]: if len(self.ydiffs) > 1: return None if len(unique(self.fields["M"])) > 1: return None pos_check = self.month_position_check() return {"cs": "AS", "bs": "BAS", "ce": "A", "be": "BA"}.get(pos_check) def _get_quarterly_rule(self) -> Optional[str]: if len(self.mdiffs) > 1: return None if not self.mdiffs[0] % 3 == 0: return None pos_check = self.month_position_check() return {"cs": "QS", "bs": "BQS", "ce": "Q", "be": "BQ"}.get(pos_check) def _get_monthly_rule(self) -> Optional[str]: if len(self.mdiffs) > 1: return None pos_check = self.month_position_check() return {"cs": "MS", "bs": "BMS", "ce": "M", "be": "BM"}.get(pos_check) def _is_business_daily(self) -> bool: # quick check: cannot be business daily if self.day_deltas != [1, 3]: return False # probably business daily, but need to confirm first_weekday = self.index[0].weekday() shifts = np.diff(self.index.asi8) shifts = np.floor_divide(shifts, _ONE_DAY) weekdays = np.mod(first_weekday + np.cumsum(shifts), 7) return np.all( ((weekdays == 0) & (shifts == 3)) | ((weekdays > 0) & (weekdays <= 4) & (shifts == 1)) ) def _get_wom_rule(self) -> Optional[str]: # wdiffs = unique(np.diff(self.index.week)) # We also need -47, -49, -48 to catch index spanning year boundary # if not lib.ismember(wdiffs, set([4, 5, -47, -49, -48])).all(): # return None weekdays = unique(self.index.weekday) if len(weekdays) > 1: return None week_of_months = unique((self.index.day - 1) // 7) # Only attempt to infer up to WOM-4. See #9425 week_of_months = week_of_months[week_of_months < 4] if len(week_of_months) == 0 or len(week_of_months) > 1: return None # get which week week = week_of_months[0] + 1 wd = int_to_weekday[weekdays[0]] return f"WOM-{week}{wd}" class _TimedeltaFrequencyInferer(_FrequencyInferer): def _infer_daily_rule(self): if self.is_unique: days = self.deltas[0] / _ONE_DAY if days % 7 == 0: # Weekly wd = int_to_weekday[self.rep_stamp.weekday()] alias = f"W-{wd}" return _maybe_add_count(alias, days / 7) else: return _maybe_add_count("D", days) def _is_multiple(us, mult: int) -> bool: return us % mult == 0 def _maybe_add_count(base: str, count: float) -> str: if count != 1: assert count == int(count) count = int(count) return f"{count}{base}" else: return base