LSR/env/lib/python3.6/site-packages/control/tests/canonical_test.py
2020-06-04 17:24:47 +02:00

297 lines
13 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from control import ss, tf, tf2ss, ss2tf
from control.canonical import canonical_form, reachable_form, \
observable_form, modal_form, similarity_transform
from control.exception import ControlNotImplemented
class TestCanonical(unittest.TestCase):
"""Tests for the canonical forms class"""
def test_reachable_form(self):
"""Test the reachable canonical form"""
# Create a system in the reachable canonical form
coeffs = [1.0, 2.0, 3.0, 4.0, 1.0]
A_true = np.polynomial.polynomial.polycompanion(coeffs)
A_true = np.fliplr(np.rot90(A_true))
B_true = np.matrix("1.0 0.0 0.0 0.0").T
C_true = np.matrix("1.0 1.0 1.0 1.0")
D_true = 42.0
# Perform a coordinate transform with a random invertible matrix
T_true = np.matrix([[-0.27144004, -0.39933167, 0.75634684, 0.44135471],
[-0.74855725, -0.39136285, -0.18142339, -0.50356997],
[-0.40688007, 0.81416369, 0.38002113, -0.16483334],
[-0.44769516, 0.15654653, -0.50060858, 0.72419146]])
A = np.linalg.solve(T_true, A_true)*T_true
B = np.linalg.solve(T_true, B_true)
C = C_true*T_true
D = D_true
# Create a state space system and convert it to the reachable canonical form
sys_check, T_check = canonical_form(ss(A, B, C, D), "reachable")
# Check against the true values
np.testing.assert_array_almost_equal(sys_check.A, A_true)
np.testing.assert_array_almost_equal(sys_check.B, B_true)
np.testing.assert_array_almost_equal(sys_check.C, C_true)
np.testing.assert_array_almost_equal(sys_check.D, D_true)
np.testing.assert_array_almost_equal(T_check, T_true)
# Reachable form only supports SISO
sys = tf([[ [1], [1] ]], [[ [1, 2, 1], [1, 2, 1] ]])
np.testing.assert_raises(ControlNotImplemented, reachable_form, sys)
def test_unreachable_system(self):
"""Test reachable canonical form with an unreachable system"""
# Create an unreachable system
A = np.matrix("1.0 2.0 2.0; 4.0 5.0 5.0; 7.0 8.0 8.0")
B = np.matrix("1.0 1.0 1.0").T
C = np.matrix("1.0 1.0 1.0")
D = 42.0
sys = ss(A, B, C, D)
# Check if an exception is raised
np.testing.assert_raises(ValueError, canonical_form, sys, "reachable")
def test_modal_form(self):
"""Test the modal canonical form"""
# Create a system in the modal canonical form
A_true = np.diag([4.0, 3.0, 2.0, 1.0]) # order from the largest to the smallest
B_true = np.matrix("1.1 2.2 3.3 4.4").T
C_true = np.matrix("1.3 1.4 1.5 1.6")
D_true = 42.0
# Perform a coordinate transform with a random invertible matrix
T_true = np.matrix([[-0.27144004, -0.39933167, 0.75634684, 0.44135471],
[-0.74855725, -0.39136285, -0.18142339, -0.50356997],
[-0.40688007, 0.81416369, 0.38002113, -0.16483334],
[-0.44769516, 0.15654653, -0.50060858, 0.72419146]])
A = np.linalg.solve(T_true, A_true)*T_true
B = np.linalg.solve(T_true, B_true)
C = C_true*T_true
D = D_true
# Create a state space system and convert it to the modal canonical form
sys_check, T_check = canonical_form(ss(A, B, C, D), "modal")
# Check against the true values
# TODO: Test in respect to ambiguous transformation (system characteristics?)
np.testing.assert_array_almost_equal(sys_check.A, A_true)
#np.testing.assert_array_almost_equal(sys_check.B, B_true)
#np.testing.assert_array_almost_equal(sys_check.C, C_true)
np.testing.assert_array_almost_equal(sys_check.D, D_true)
#np.testing.assert_array_almost_equal(T_check, T_true)
# Check conversion when there are complex eigenvalues
A_true = np.array([[-1, 1, 0, 0],
[-1, -1, 0, 0],
[ 0, 0, -2, 0],
[ 0, 0, 0, -3]])
B_true = np.array([[0], [1], [0], [1]])
C_true = np.array([[1, 0, 0, 1]])
D_true = np.array([[0]])
A = np.linalg.solve(T_true, A_true) * T_true
B = np.linalg.solve(T_true, B_true)
C = C_true * T_true
D = D_true
# Create state space system and convert to modal canonical form
sys_check, T_check = canonical_form(ss(A, B, C, D), 'modal')
# Check A and D matrix, which are uniquely defined
np.testing.assert_array_almost_equal(sys_check.A, A_true)
np.testing.assert_array_almost_equal(sys_check.D, D_true)
# B matrix should be all ones (or zero if not controllable)
# TODO: need to update modal_form() to implement this
if np.allclose(T_check, T_true):
np.testing.assert_array_almost_equal(sys_check.B, B_true)
np.testing.assert_array_almost_equal(sys_check.C, C_true)
# Make sure Hankel coefficients are OK
from numpy.linalg import matrix_power
for i in range(A.shape[0]):
np.testing.assert_almost_equal(
np.dot(np.dot(C_true, matrix_power(A_true, i)), B_true),
np.dot(np.dot(C, matrix_power(A, i)), B))
# Reorder rows to get complete coverage (real eigenvalue cxrtvfirst)
A_true = np.array([[-1, 0, 0, 0],
[ 0, -2, 1, 0],
[ 0, -1, -2, 0],
[ 0, 0, 0, -3]])
B_true = np.array([[0], [0], [1], [1]])
C_true = np.array([[0, 1, 0, 1]])
D_true = np.array([[0]])
A = np.linalg.solve(T_true, A_true) * T_true
B = np.linalg.solve(T_true, B_true)
C = C_true * T_true
D = D_true
# Create state space system and convert to modal canonical form
sys_check, T_check = canonical_form(ss(A, B, C, D), 'modal')
# Check A and D matrix, which are uniquely defined
np.testing.assert_array_almost_equal(sys_check.A, A_true)
np.testing.assert_array_almost_equal(sys_check.D, D_true)
# B matrix should be all ones (or zero if not controllable)
# TODO: need to update modal_form() to implement this
if np.allclose(T_check, T_true):
np.testing.assert_array_almost_equal(sys_check.B, B_true)
np.testing.assert_array_almost_equal(sys_check.C, C_true)
# Make sure Hankel coefficients are OK
from numpy.linalg import matrix_power
for i in range(A.shape[0]):
np.testing.assert_almost_equal(
np.dot(np.dot(C_true, matrix_power(A_true, i)), B_true),
np.dot(np.dot(C, matrix_power(A, i)), B))
# Modal form only supports SISO
sys = tf([[ [1], [1] ]], [[ [1, 2, 1], [1, 2, 1] ]])
np.testing.assert_raises(ControlNotImplemented, modal_form, sys)
def test_observable_form(self):
"""Test the observable canonical form"""
# Create a system in the observable canonical form
coeffs = [1.0, 2.0, 3.0, 4.0, 1.0]
A_true = np.polynomial.polynomial.polycompanion(coeffs)
A_true = np.fliplr(np.flipud(A_true))
B_true = np.matrix("1.0 1.0 1.0 1.0").T
C_true = np.matrix("1.0 0.0 0.0 0.0")
D_true = 42.0
# Perform a coordinate transform with a random invertible matrix
T_true = np.matrix([[-0.27144004, -0.39933167, 0.75634684, 0.44135471],
[-0.74855725, -0.39136285, -0.18142339, -0.50356997],
[-0.40688007, 0.81416369, 0.38002113, -0.16483334],
[-0.44769516, 0.15654653, -0.50060858, 0.72419146]])
A = np.linalg.solve(T_true, A_true)*T_true
B = np.linalg.solve(T_true, B_true)
C = C_true*T_true
D = D_true
# Create a state space system and convert it to the observable canonical form
sys_check, T_check = canonical_form(ss(A, B, C, D), "observable")
# Check against the true values
np.testing.assert_array_almost_equal(sys_check.A, A_true)
np.testing.assert_array_almost_equal(sys_check.B, B_true)
np.testing.assert_array_almost_equal(sys_check.C, C_true)
np.testing.assert_array_almost_equal(sys_check.D, D_true)
np.testing.assert_array_almost_equal(T_check, T_true)
# Observable form only supports SISO
sys = tf([[ [1], [1] ]], [[ [1, 2, 1], [1, 2, 1] ]])
np.testing.assert_raises(ControlNotImplemented, observable_form, sys)
def test_unobservable_system(self):
"""Test observable canonical form with an unobservable system"""
# Create an unobservable system
A = np.matrix("1.0 2.0 2.0; 4.0 5.0 5.0; 7.0 8.0 8.0")
B = np.matrix("1.0 1.0 1.0").T
C = np.matrix("1.0 1.0 1.0")
D = 42.0
sys = ss(A, B, C, D)
# Check if an exception is raised
np.testing.assert_raises(ValueError, canonical_form, sys, "observable")
def test_arguments(self):
# Additional unit tests added on 25 May 2019 to increase coverage
# Unknown canonical forms should generate exception
sys = tf([1], [1, 2, 1])
np.testing.assert_raises(
ControlNotImplemented, canonical_form, sys, 'unknown')
def test_similarity(self):
"""Test similarty transform"""
# Single input, single output systems
siso_ini = tf2ss(tf([1, 1], [1, 1, 1]))
for form in 'reachable', 'observable':
# Convert the system to one of the canonical forms
siso_can, T_can = canonical_form(siso_ini, form)
# Use a similarity transformation to transform it back
siso_sim = similarity_transform(siso_can, np.linalg.inv(T_can))
# Make sure everything goes back to the original form
np.testing.assert_array_almost_equal(siso_sim.A, siso_ini.A)
np.testing.assert_array_almost_equal(siso_sim.B, siso_ini.B)
np.testing.assert_array_almost_equal(siso_sim.C, siso_ini.C)
np.testing.assert_array_almost_equal(siso_sim.D, siso_ini.D)
# Multi-input, multi-output systems
mimo_ini = ss(
[[-1, 1, 0, 0], [0, -2, 1, 0], [0, 0, -3, 1], [0, 0, 0, -4]],
[[1, 0], [0, 0], [0, 1], [1, 1]],
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]],
np.zeros((3, 2)))
# Simple transformation: row/col flips + scaling
mimo_txf = np.array(
[[0, 1, 0, 0], [2, 0, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
# Transform the system and transform it back
mimo_sim = similarity_transform(mimo_ini, mimo_txf)
mimo_new = similarity_transform(mimo_sim, np.linalg.inv(mimo_txf))
np.testing.assert_array_almost_equal(mimo_new.A, mimo_ini.A)
np.testing.assert_array_almost_equal(mimo_new.B, mimo_ini.B)
np.testing.assert_array_almost_equal(mimo_new.C, mimo_ini.C)
np.testing.assert_array_almost_equal(mimo_new.D, mimo_ini.D)
# Make sure rescaling by identify does nothing
mimo_new = similarity_transform(mimo_ini, np.eye(4))
np.testing.assert_array_almost_equal(mimo_new.A, mimo_ini.A)
np.testing.assert_array_almost_equal(mimo_new.B, mimo_ini.B)
np.testing.assert_array_almost_equal(mimo_new.C, mimo_ini.C)
np.testing.assert_array_almost_equal(mimo_new.D, mimo_ini.D)
# Time rescaling
mimo_tim = similarity_transform(mimo_ini, np.eye(4), timescale=0.3)
mimo_new = similarity_transform(mimo_tim, np.eye(4), timescale=1/0.3)
np.testing.assert_array_almost_equal(mimo_new.A, mimo_ini.A)
np.testing.assert_array_almost_equal(mimo_new.B, mimo_ini.B)
np.testing.assert_array_almost_equal(mimo_new.C, mimo_ini.C)
np.testing.assert_array_almost_equal(mimo_new.D, mimo_ini.D)
# Time + transformation, in one step
mimo_sim = similarity_transform(mimo_ini, mimo_txf, timescale=0.3)
mimo_new = similarity_transform(mimo_sim, np.linalg.inv(mimo_txf),
timescale=1/0.3)
np.testing.assert_array_almost_equal(mimo_new.A, mimo_ini.A)
np.testing.assert_array_almost_equal(mimo_new.B, mimo_ini.B)
np.testing.assert_array_almost_equal(mimo_new.C, mimo_ini.C)
np.testing.assert_array_almost_equal(mimo_new.D, mimo_ini.D)
# Time + transformation, in two steps
mimo_sim = similarity_transform(mimo_ini, mimo_txf, timescale=0.3)
mimo_tim = similarity_transform(mimo_sim, np.eye(4), timescale=1/0.3)
mimo_new = similarity_transform(mimo_tim, np.linalg.inv(mimo_txf))
np.testing.assert_array_almost_equal(mimo_new.A, mimo_ini.A)
np.testing.assert_array_almost_equal(mimo_new.B, mimo_ini.B)
np.testing.assert_array_almost_equal(mimo_new.C, mimo_ini.C)
np.testing.assert_array_almost_equal(mimo_new.D, mimo_ini.D)
def suite():
return unittest.TestLoader().loadTestsFromTestCase(TestFeedback)
if __name__ == "__main__":
unittest.main()