1005 lines
31 KiB
Python
1005 lines
31 KiB
Python
""" test label based indexing with loc """
|
|
from io import StringIO
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, Series, Timestamp, date_range
|
|
import pandas._testing as tm
|
|
from pandas.api.types import is_scalar
|
|
from pandas.tests.indexing.common import Base
|
|
|
|
|
|
class TestLoc(Base):
|
|
def test_loc_getitem_dups(self):
|
|
# GH 5678
|
|
# repeated getitems on a dup index returning a ndarray
|
|
df = DataFrame(
|
|
np.random.random_sample((20, 5)), index=["ABCDE"[x % 5] for x in range(20)]
|
|
)
|
|
expected = df.loc["A", 0]
|
|
result = df.loc[:, 0].loc["A"]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_loc_getitem_dups2(self):
|
|
|
|
# GH4726
|
|
# dup indexing with iloc/loc
|
|
df = DataFrame(
|
|
[[1, 2, "foo", "bar", Timestamp("20130101")]],
|
|
columns=["a", "a", "a", "a", "a"],
|
|
index=[1],
|
|
)
|
|
expected = Series(
|
|
[1, 2, "foo", "bar", Timestamp("20130101")],
|
|
index=["a", "a", "a", "a", "a"],
|
|
name=1,
|
|
)
|
|
|
|
result = df.iloc[0]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = df.loc[1]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_loc_setitem_dups(self):
|
|
|
|
# GH 6541
|
|
df_orig = DataFrame(
|
|
{
|
|
"me": list("rttti"),
|
|
"foo": list("aaade"),
|
|
"bar": np.arange(5, dtype="float64") * 1.34 + 2,
|
|
"bar2": np.arange(5, dtype="float64") * -0.34 + 2,
|
|
}
|
|
).set_index("me")
|
|
|
|
indexer = tuple(["r", ["bar", "bar2"]])
|
|
df = df_orig.copy()
|
|
df.loc[indexer] *= 2.0
|
|
tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer])
|
|
|
|
indexer = tuple(["r", "bar"])
|
|
df = df_orig.copy()
|
|
df.loc[indexer] *= 2.0
|
|
assert df.loc[indexer] == 2.0 * df_orig.loc[indexer]
|
|
|
|
indexer = tuple(["t", ["bar", "bar2"]])
|
|
df = df_orig.copy()
|
|
df.loc[indexer] *= 2.0
|
|
tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer])
|
|
|
|
def test_loc_setitem_slice(self):
|
|
# GH10503
|
|
|
|
# assigning the same type should not change the type
|
|
df1 = DataFrame({"a": [0, 1, 1], "b": Series([100, 200, 300], dtype="uint32")})
|
|
ix = df1["a"] == 1
|
|
newb1 = df1.loc[ix, "b"] + 1
|
|
df1.loc[ix, "b"] = newb1
|
|
expected = DataFrame(
|
|
{"a": [0, 1, 1], "b": Series([100, 201, 301], dtype="uint32")}
|
|
)
|
|
tm.assert_frame_equal(df1, expected)
|
|
|
|
# assigning a new type should get the inferred type
|
|
df2 = DataFrame({"a": [0, 1, 1], "b": [100, 200, 300]}, dtype="uint64")
|
|
ix = df1["a"] == 1
|
|
newb2 = df2.loc[ix, "b"]
|
|
df1.loc[ix, "b"] = newb2
|
|
expected = DataFrame({"a": [0, 1, 1], "b": [100, 200, 300]}, dtype="uint64")
|
|
tm.assert_frame_equal(df2, expected)
|
|
|
|
def test_loc_getitem_int(self):
|
|
|
|
# int label
|
|
self.check_result("loc", 2, "loc", 2, typs=["label"], fails=KeyError)
|
|
|
|
def test_loc_getitem_label(self):
|
|
|
|
# label
|
|
self.check_result("loc", "c", "loc", "c", typs=["empty"], fails=KeyError)
|
|
|
|
def test_loc_getitem_label_out_of_range(self):
|
|
|
|
# out of range label
|
|
self.check_result(
|
|
"loc",
|
|
"f",
|
|
"loc",
|
|
"f",
|
|
typs=["ints", "uints", "labels", "mixed", "ts"],
|
|
fails=KeyError,
|
|
)
|
|
self.check_result("loc", "f", "ix", "f", typs=["floats"], fails=KeyError)
|
|
self.check_result("loc", "f", "loc", "f", typs=["floats"], fails=KeyError)
|
|
self.check_result(
|
|
"loc", 20, "loc", 20, typs=["ints", "uints", "mixed"], fails=KeyError,
|
|
)
|
|
self.check_result("loc", 20, "loc", 20, typs=["labels"], fails=TypeError)
|
|
self.check_result("loc", 20, "loc", 20, typs=["ts"], axes=0, fails=TypeError)
|
|
self.check_result("loc", 20, "loc", 20, typs=["floats"], axes=0, fails=KeyError)
|
|
|
|
def test_loc_getitem_label_list(self):
|
|
# TODO: test something here?
|
|
# list of labels
|
|
pass
|
|
|
|
def test_loc_getitem_label_list_with_missing(self):
|
|
self.check_result(
|
|
"loc", [0, 1, 2], "loc", [0, 1, 2], typs=["empty"], fails=KeyError,
|
|
)
|
|
self.check_result(
|
|
"loc",
|
|
[0, 2, 10],
|
|
"ix",
|
|
[0, 2, 10],
|
|
typs=["ints", "uints", "floats"],
|
|
axes=0,
|
|
fails=KeyError,
|
|
)
|
|
|
|
self.check_result(
|
|
"loc",
|
|
[3, 6, 7],
|
|
"ix",
|
|
[3, 6, 7],
|
|
typs=["ints", "uints", "floats"],
|
|
axes=1,
|
|
fails=KeyError,
|
|
)
|
|
|
|
# GH 17758 - MultiIndex and missing keys
|
|
self.check_result(
|
|
"loc",
|
|
[(1, 3), (1, 4), (2, 5)],
|
|
"ix",
|
|
[(1, 3), (1, 4), (2, 5)],
|
|
typs=["multi"],
|
|
axes=0,
|
|
fails=KeyError,
|
|
)
|
|
|
|
def test_getitem_label_list_with_missing(self):
|
|
s = Series(range(3), index=["a", "b", "c"])
|
|
|
|
# consistency
|
|
with pytest.raises(KeyError, match="with any missing labels"):
|
|
s[["a", "d"]]
|
|
|
|
s = Series(range(3))
|
|
with pytest.raises(KeyError, match="with any missing labels"):
|
|
s[[0, 3]]
|
|
|
|
def test_loc_getitem_label_list_fails(self):
|
|
# fails
|
|
self.check_result(
|
|
"loc",
|
|
[20, 30, 40],
|
|
"loc",
|
|
[20, 30, 40],
|
|
typs=["ints", "uints"],
|
|
axes=1,
|
|
fails=KeyError,
|
|
)
|
|
|
|
def test_loc_getitem_label_array_like(self):
|
|
# TODO: test something?
|
|
# array like
|
|
pass
|
|
|
|
def test_loc_getitem_bool(self):
|
|
# boolean indexers
|
|
b = [True, False, True, False]
|
|
|
|
self.check_result("loc", b, "loc", b, typs=["empty"], fails=IndexError)
|
|
|
|
@pytest.mark.parametrize("index", [[True, False], [True, False, True, False]])
|
|
def test_loc_getitem_bool_diff_len(self, index):
|
|
# GH26658
|
|
s = Series([1, 2, 3])
|
|
msg = "Boolean index has wrong length: {} instead of {}".format(
|
|
len(index), len(s)
|
|
)
|
|
with pytest.raises(IndexError, match=msg):
|
|
_ = s.loc[index]
|
|
|
|
def test_loc_getitem_int_slice(self):
|
|
# TODO: test something here?
|
|
pass
|
|
|
|
def test_loc_to_fail(self):
|
|
|
|
# GH3449
|
|
df = DataFrame(
|
|
np.random.random((3, 3)), index=["a", "b", "c"], columns=["e", "f", "g"]
|
|
)
|
|
|
|
# raise a KeyError?
|
|
msg = (
|
|
r"\"None of \[Int64Index\(\[1, 2\], dtype='int64'\)\] are"
|
|
r" in the \[index\]\""
|
|
)
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[[1, 2], [1, 2]]
|
|
|
|
# GH 7496
|
|
# loc should not fallback
|
|
|
|
s = Series(dtype=object)
|
|
s.loc[1] = 1
|
|
s.loc["a"] = 2
|
|
|
|
with pytest.raises(KeyError, match=r"^-1$"):
|
|
s.loc[-1]
|
|
|
|
msg = (
|
|
r"\"None of \[Int64Index\(\[-1, -2\], dtype='int64'\)\] are"
|
|
r" in the \[index\]\""
|
|
)
|
|
with pytest.raises(KeyError, match=msg):
|
|
s.loc[[-1, -2]]
|
|
|
|
msg = r"\"None of \[Index\(\['4'\], dtype='object'\)\] are in the \[index\]\""
|
|
with pytest.raises(KeyError, match=msg):
|
|
s.loc[["4"]]
|
|
|
|
s.loc[-1] = 3
|
|
with pytest.raises(KeyError, match="with any missing labels"):
|
|
s.loc[[-1, -2]]
|
|
|
|
s["a"] = 2
|
|
msg = (
|
|
r"\"None of \[Int64Index\(\[-2\], dtype='int64'\)\] are"
|
|
r" in the \[index\]\""
|
|
)
|
|
with pytest.raises(KeyError, match=msg):
|
|
s.loc[[-2]]
|
|
|
|
del s["a"]
|
|
|
|
with pytest.raises(KeyError, match=msg):
|
|
s.loc[[-2]] = 0
|
|
|
|
# inconsistency between .loc[values] and .loc[values,:]
|
|
# GH 7999
|
|
df = DataFrame([["a"], ["b"]], index=[1, 2], columns=["value"])
|
|
|
|
msg = (
|
|
r"\"None of \[Int64Index\(\[3\], dtype='int64'\)\] are"
|
|
r" in the \[index\]\""
|
|
)
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[[3], :]
|
|
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[[3]]
|
|
|
|
def test_loc_getitem_list_with_fail(self):
|
|
# 15747
|
|
# should KeyError if *any* missing labels
|
|
|
|
s = Series([1, 2, 3])
|
|
|
|
s.loc[[2]]
|
|
|
|
with pytest.raises(
|
|
KeyError,
|
|
match=re.escape(
|
|
"\"None of [Int64Index([3], dtype='int64')] are in the [index]\""
|
|
),
|
|
):
|
|
s.loc[[3]]
|
|
|
|
# a non-match and a match
|
|
with pytest.raises(KeyError, match="with any missing labels"):
|
|
s.loc[[2, 3]]
|
|
|
|
def test_loc_getitem_label_slice(self):
|
|
|
|
# label slices (with ints)
|
|
|
|
# real label slices
|
|
|
|
# GH 14316
|
|
|
|
self.check_result(
|
|
"loc",
|
|
slice(1, 3),
|
|
"loc",
|
|
slice(1, 3),
|
|
typs=["labels", "mixed", "empty", "ts", "floats"],
|
|
fails=TypeError,
|
|
)
|
|
|
|
self.check_result(
|
|
"loc",
|
|
slice("20130102", "20130104"),
|
|
"loc",
|
|
slice("20130102", "20130104"),
|
|
typs=["ts"],
|
|
axes=1,
|
|
fails=TypeError,
|
|
)
|
|
|
|
self.check_result(
|
|
"loc",
|
|
slice(2, 8),
|
|
"loc",
|
|
slice(2, 8),
|
|
typs=["mixed"],
|
|
axes=0,
|
|
fails=TypeError,
|
|
)
|
|
self.check_result(
|
|
"loc",
|
|
slice(2, 8),
|
|
"loc",
|
|
slice(2, 8),
|
|
typs=["mixed"],
|
|
axes=1,
|
|
fails=KeyError,
|
|
)
|
|
|
|
self.check_result(
|
|
"loc",
|
|
slice(2, 4, 2),
|
|
"loc",
|
|
slice(2, 4, 2),
|
|
typs=["mixed"],
|
|
axes=0,
|
|
fails=TypeError,
|
|
)
|
|
|
|
def test_loc_index(self):
|
|
# gh-17131
|
|
# a boolean index should index like a boolean numpy array
|
|
|
|
df = DataFrame(
|
|
np.random.random(size=(5, 10)),
|
|
index=["alpha_0", "alpha_1", "alpha_2", "beta_0", "beta_1"],
|
|
)
|
|
|
|
mask = df.index.map(lambda x: "alpha" in x)
|
|
expected = df.loc[np.array(mask)]
|
|
|
|
result = df.loc[mask]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc[mask.values]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc[pd.array(mask, dtype="boolean")]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_loc_general(self):
|
|
|
|
df = DataFrame(
|
|
np.random.rand(4, 4),
|
|
columns=["A", "B", "C", "D"],
|
|
index=["A", "B", "C", "D"],
|
|
)
|
|
|
|
# want this to work
|
|
result = df.loc[:, "A":"B"].iloc[0:2, :]
|
|
assert (result.columns == ["A", "B"]).all()
|
|
assert (result.index == ["A", "B"]).all()
|
|
|
|
# mixed type
|
|
result = DataFrame({"a": [Timestamp("20130101")], "b": [1]}).iloc[0]
|
|
expected = Series([Timestamp("20130101"), 1], index=["a", "b"], name=0)
|
|
tm.assert_series_equal(result, expected)
|
|
assert result.dtype == object
|
|
|
|
def test_loc_setitem_consistency(self):
|
|
# GH 6149
|
|
# coerce similarly for setitem and loc when rows have a null-slice
|
|
expected = DataFrame(
|
|
{
|
|
"date": Series(0, index=range(5), dtype=np.int64),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
|
|
df = DataFrame(
|
|
{
|
|
"date": date_range("2000-01-01", "2000-01-5"),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
df.loc[:, "date"] = 0
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
df = DataFrame(
|
|
{
|
|
"date": date_range("2000-01-01", "2000-01-5"),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
df.loc[:, "date"] = np.array(0, dtype=np.int64)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
df = DataFrame(
|
|
{
|
|
"date": date_range("2000-01-01", "2000-01-5"),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
df.loc[:, "date"] = np.array([0, 0, 0, 0, 0], dtype=np.int64)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"date": Series("foo", index=range(5)),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
df = DataFrame(
|
|
{
|
|
"date": date_range("2000-01-01", "2000-01-5"),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
df.loc[:, "date"] = "foo"
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"date": Series(1.0, index=range(5)),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
df = DataFrame(
|
|
{
|
|
"date": date_range("2000-01-01", "2000-01-5"),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
df.loc[:, "date"] = 1.0
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
# GH 15494
|
|
# setting on frame with single row
|
|
df = DataFrame({"date": Series([Timestamp("20180101")])})
|
|
df.loc[:, "date"] = "string"
|
|
expected = DataFrame({"date": Series(["string"])})
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_loc_setitem_consistency_empty(self):
|
|
# empty (essentially noops)
|
|
expected = DataFrame(columns=["x", "y"])
|
|
expected["x"] = expected["x"].astype(np.int64)
|
|
df = DataFrame(columns=["x", "y"])
|
|
df.loc[:, "x"] = 1
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
df = DataFrame(columns=["x", "y"])
|
|
df["x"] = 1
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_loc_setitem_consistency_slice_column_len(self):
|
|
# .loc[:,column] setting with slice == len of the column
|
|
# GH10408
|
|
data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat
|
|
Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse
|
|
Region,Site,RespondentID,,,,,
|
|
Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes,
|
|
Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes
|
|
Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes,
|
|
Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No"""
|
|
|
|
df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2])
|
|
df.loc[:, ("Respondent", "StartDate")] = pd.to_datetime(
|
|
df.loc[:, ("Respondent", "StartDate")]
|
|
)
|
|
df.loc[:, ("Respondent", "EndDate")] = pd.to_datetime(
|
|
df.loc[:, ("Respondent", "EndDate")]
|
|
)
|
|
df.loc[:, ("Respondent", "Duration")] = (
|
|
df.loc[:, ("Respondent", "EndDate")]
|
|
- df.loc[:, ("Respondent", "StartDate")]
|
|
)
|
|
|
|
df.loc[:, ("Respondent", "Duration")] = df.loc[
|
|
:, ("Respondent", "Duration")
|
|
].astype("timedelta64[s]")
|
|
expected = Series(
|
|
[1380, 720, 840, 2160.0], index=df.index, name=("Respondent", "Duration")
|
|
)
|
|
tm.assert_series_equal(df[("Respondent", "Duration")], expected)
|
|
|
|
@pytest.mark.parametrize("unit", ["Y", "M", "D", "h", "m", "s", "ms", "us"])
|
|
def test_loc_assign_non_ns_datetime(self, unit):
|
|
# GH 27395, non-ns dtype assignment via .loc should work
|
|
# and return the same result when using simple assignment
|
|
df = DataFrame(
|
|
{
|
|
"timestamp": [
|
|
np.datetime64("2017-02-11 12:41:29"),
|
|
np.datetime64("1991-11-07 04:22:37"),
|
|
]
|
|
}
|
|
)
|
|
|
|
df.loc[:, unit] = df.loc[:, "timestamp"].values.astype(
|
|
"datetime64[{unit}]".format(unit=unit)
|
|
)
|
|
df["expected"] = df.loc[:, "timestamp"].values.astype(
|
|
"datetime64[{unit}]".format(unit=unit)
|
|
)
|
|
expected = Series(df.loc[:, "expected"], name=unit)
|
|
tm.assert_series_equal(df.loc[:, unit], expected)
|
|
|
|
def test_loc_modify_datetime(self):
|
|
# see gh-28837
|
|
df = DataFrame.from_dict(
|
|
{"date": [1485264372711, 1485265925110, 1540215845888, 1540282121025]}
|
|
)
|
|
|
|
df["date_dt"] = pd.to_datetime(df["date"], unit="ms", cache=True)
|
|
|
|
df.loc[:, "date_dt_cp"] = df.loc[:, "date_dt"]
|
|
df.loc[[2, 3], "date_dt_cp"] = df.loc[[2, 3], "date_dt"]
|
|
|
|
expected = DataFrame(
|
|
[
|
|
[1485264372711, "2017-01-24 13:26:12.711", "2017-01-24 13:26:12.711"],
|
|
[1485265925110, "2017-01-24 13:52:05.110", "2017-01-24 13:52:05.110"],
|
|
[1540215845888, "2018-10-22 13:44:05.888", "2018-10-22 13:44:05.888"],
|
|
[1540282121025, "2018-10-23 08:08:41.025", "2018-10-23 08:08:41.025"],
|
|
],
|
|
columns=["date", "date_dt", "date_dt_cp"],
|
|
)
|
|
|
|
columns = ["date_dt", "date_dt_cp"]
|
|
expected[columns] = expected[columns].apply(pd.to_datetime)
|
|
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_loc_setitem_frame(self):
|
|
df = self.frame_labels
|
|
|
|
result = df.iloc[0, 0]
|
|
|
|
df.loc["a", "A"] = 1
|
|
result = df.loc["a", "A"]
|
|
assert result == 1
|
|
|
|
result = df.iloc[0, 0]
|
|
assert result == 1
|
|
|
|
df.loc[:, "B":"D"] = 0
|
|
expected = df.loc[:, "B":"D"]
|
|
result = df.iloc[:, 1:]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# GH 6254
|
|
# setting issue
|
|
df = DataFrame(index=[3, 5, 4], columns=["A"])
|
|
df.loc[[4, 3, 5], "A"] = np.array([1, 2, 3], dtype="int64")
|
|
expected = DataFrame(dict(A=Series([1, 2, 3], index=[4, 3, 5]))).reindex(
|
|
index=[3, 5, 4]
|
|
)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
# GH 6252
|
|
# setting with an empty frame
|
|
keys1 = ["@" + str(i) for i in range(5)]
|
|
val1 = np.arange(5, dtype="int64")
|
|
|
|
keys2 = ["@" + str(i) for i in range(4)]
|
|
val2 = np.arange(4, dtype="int64")
|
|
|
|
index = list(set(keys1).union(keys2))
|
|
df = DataFrame(index=index)
|
|
df["A"] = np.nan
|
|
df.loc[keys1, "A"] = val1
|
|
|
|
df["B"] = np.nan
|
|
df.loc[keys2, "B"] = val2
|
|
|
|
expected = DataFrame(
|
|
dict(A=Series(val1, index=keys1), B=Series(val2, index=keys2))
|
|
).reindex(index=index)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
# GH 8669
|
|
# invalid coercion of nan -> int
|
|
df = DataFrame({"A": [1, 2, 3], "B": np.nan})
|
|
df.loc[df.B > df.A, "B"] = df.A
|
|
expected = DataFrame({"A": [1, 2, 3], "B": np.nan})
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
# GH 6546
|
|
# setting with mixed labels
|
|
df = DataFrame({1: [1, 2], 2: [3, 4], "a": ["a", "b"]})
|
|
|
|
result = df.loc[0, [1, 2]]
|
|
expected = Series([1, 3], index=[1, 2], dtype=object, name=0)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
expected = DataFrame({1: [5, 2], 2: [6, 4], "a": ["a", "b"]})
|
|
df.loc[0, [1, 2]] = [5, 6]
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_loc_setitem_frame_multiples(self):
|
|
# multiple setting
|
|
df = DataFrame(
|
|
{"A": ["foo", "bar", "baz"], "B": Series(range(3), dtype=np.int64)}
|
|
)
|
|
rhs = df.loc[1:2]
|
|
rhs.index = df.index[0:2]
|
|
df.loc[0:1] = rhs
|
|
expected = DataFrame(
|
|
{"A": ["bar", "baz", "baz"], "B": Series([1, 2, 2], dtype=np.int64)}
|
|
)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
# multiple setting with frame on rhs (with M8)
|
|
df = DataFrame(
|
|
{
|
|
"date": date_range("2000-01-01", "2000-01-5"),
|
|
"val": Series(range(5), dtype=np.int64),
|
|
}
|
|
)
|
|
expected = DataFrame(
|
|
{
|
|
"date": [
|
|
Timestamp("20000101"),
|
|
Timestamp("20000102"),
|
|
Timestamp("20000101"),
|
|
Timestamp("20000102"),
|
|
Timestamp("20000103"),
|
|
],
|
|
"val": Series([0, 1, 0, 1, 2], dtype=np.int64),
|
|
}
|
|
)
|
|
rhs = df.loc[0:2]
|
|
rhs.index = df.index[2:5]
|
|
df.loc[2:4] = rhs
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"indexer", [["A"], slice(None, "A", None), np.array(["A"])]
|
|
)
|
|
@pytest.mark.parametrize("value", [["Z"], np.array(["Z"])])
|
|
def test_loc_setitem_with_scalar_index(self, indexer, value):
|
|
# GH #19474
|
|
# assigning like "df.loc[0, ['A']] = ['Z']" should be evaluated
|
|
# elementwisely, not using "setter('A', ['Z'])".
|
|
|
|
df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
|
|
df.loc[0, indexer] = value
|
|
result = df.loc[0, "A"]
|
|
|
|
assert is_scalar(result) and result == "Z"
|
|
|
|
def test_loc_coercion(self):
|
|
|
|
# 12411
|
|
df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC"), pd.NaT]})
|
|
expected = df.dtypes
|
|
|
|
result = df.iloc[[0]]
|
|
tm.assert_series_equal(result.dtypes, expected)
|
|
|
|
result = df.iloc[[1]]
|
|
tm.assert_series_equal(result.dtypes, expected)
|
|
|
|
# 12045
|
|
import datetime
|
|
|
|
df = DataFrame(
|
|
{"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}
|
|
)
|
|
expected = df.dtypes
|
|
|
|
result = df.iloc[[0]]
|
|
tm.assert_series_equal(result.dtypes, expected)
|
|
|
|
result = df.iloc[[1]]
|
|
tm.assert_series_equal(result.dtypes, expected)
|
|
|
|
# 11594
|
|
df = DataFrame({"text": ["some words"] + [None] * 9})
|
|
expected = df.dtypes
|
|
|
|
result = df.iloc[0:2]
|
|
tm.assert_series_equal(result.dtypes, expected)
|
|
|
|
result = df.iloc[3:]
|
|
tm.assert_series_equal(result.dtypes, expected)
|
|
|
|
def test_setitem_new_key_tz(self):
|
|
# GH#12862 should not raise on assigning the second value
|
|
vals = [
|
|
pd.to_datetime(42).tz_localize("UTC"),
|
|
pd.to_datetime(666).tz_localize("UTC"),
|
|
]
|
|
expected = pd.Series(vals, index=["foo", "bar"])
|
|
|
|
ser = pd.Series(dtype=object)
|
|
ser["foo"] = vals[0]
|
|
ser["bar"] = vals[1]
|
|
|
|
tm.assert_series_equal(ser, expected)
|
|
|
|
ser = pd.Series(dtype=object)
|
|
ser.loc["foo"] = vals[0]
|
|
ser.loc["bar"] = vals[1]
|
|
|
|
tm.assert_series_equal(ser, expected)
|
|
|
|
def test_loc_non_unique(self):
|
|
# GH3659
|
|
# non-unique indexer with loc slice
|
|
# https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs
|
|
|
|
# these are going to raise because the we are non monotonic
|
|
df = DataFrame(
|
|
{"A": [1, 2, 3, 4, 5, 6], "B": [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]
|
|
)
|
|
msg = "'Cannot get left slice bound for non-unique label: 1'"
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[1:]
|
|
msg = "'Cannot get left slice bound for non-unique label: 0'"
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[0:]
|
|
msg = "'Cannot get left slice bound for non-unique label: 1'"
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[1:2]
|
|
|
|
# monotonic are ok
|
|
df = DataFrame(
|
|
{"A": [1, 2, 3, 4, 5, 6], "B": [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]
|
|
).sort_index(axis=0)
|
|
result = df.loc[1:]
|
|
expected = DataFrame({"A": [2, 4, 5, 6], "B": [4, 6, 7, 8]}, index=[1, 1, 2, 3])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc[0:]
|
|
tm.assert_frame_equal(result, df)
|
|
|
|
result = df.loc[1:2]
|
|
expected = DataFrame({"A": [2, 4, 5], "B": [4, 6, 7]}, index=[1, 1, 2])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_loc_non_unique_memory_error(self):
|
|
|
|
# GH 4280
|
|
# non_unique index with a large selection triggers a memory error
|
|
|
|
columns = list("ABCDEFG")
|
|
|
|
def gen_test(l, l2):
|
|
return pd.concat(
|
|
[
|
|
DataFrame(
|
|
np.random.randn(l, len(columns)),
|
|
index=np.arange(l),
|
|
columns=columns,
|
|
),
|
|
DataFrame(
|
|
np.ones((l2, len(columns))), index=[0] * l2, columns=columns
|
|
),
|
|
]
|
|
)
|
|
|
|
def gen_expected(df, mask):
|
|
len_mask = len(mask)
|
|
return pd.concat(
|
|
[
|
|
df.take([0]),
|
|
DataFrame(
|
|
np.ones((len_mask, len(columns))),
|
|
index=[0] * len_mask,
|
|
columns=columns,
|
|
),
|
|
df.take(mask[1:]),
|
|
]
|
|
)
|
|
|
|
df = gen_test(900, 100)
|
|
assert df.index.is_unique is False
|
|
|
|
mask = np.arange(100)
|
|
result = df.loc[mask]
|
|
expected = gen_expected(df, mask)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df = gen_test(900000, 100000)
|
|
assert df.index.is_unique is False
|
|
|
|
mask = np.arange(100000)
|
|
result = df.loc[mask]
|
|
expected = gen_expected(df, mask)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_loc_name(self):
|
|
# GH 3880
|
|
df = DataFrame([[1, 1], [1, 1]])
|
|
df.index.name = "index_name"
|
|
result = df.iloc[[0, 1]].index.name
|
|
assert result == "index_name"
|
|
|
|
result = df.loc[[0, 1]].index.name
|
|
assert result == "index_name"
|
|
|
|
def test_loc_empty_list_indexer_is_ok(self):
|
|
|
|
df = tm.makeCustomDataframe(5, 2)
|
|
# vertical empty
|
|
tm.assert_frame_equal(
|
|
df.loc[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True
|
|
)
|
|
# horizontal empty
|
|
tm.assert_frame_equal(
|
|
df.loc[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True
|
|
)
|
|
# horizontal empty
|
|
tm.assert_frame_equal(
|
|
df.loc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True
|
|
)
|
|
|
|
def test_identity_slice_returns_new_object(self):
|
|
# GH13873
|
|
original_df = DataFrame({"a": [1, 2, 3]})
|
|
sliced_df = original_df.loc[:]
|
|
assert sliced_df is not original_df
|
|
assert original_df[:] is not original_df
|
|
|
|
# should be a shallow copy
|
|
original_df["a"] = [4, 4, 4]
|
|
assert (sliced_df["a"] == 4).all()
|
|
|
|
# These should not return copies
|
|
assert original_df is original_df.loc[:, :]
|
|
df = DataFrame(np.random.randn(10, 4))
|
|
assert df[0] is df.loc[:, 0]
|
|
|
|
# Same tests for Series
|
|
original_series = Series([1, 2, 3, 4, 5, 6])
|
|
sliced_series = original_series.loc[:]
|
|
assert sliced_series is not original_series
|
|
assert original_series[:] is not original_series
|
|
|
|
original_series[:3] = [7, 8, 9]
|
|
assert all(sliced_series[:3] == [7, 8, 9])
|
|
|
|
def test_loc_uint64(self):
|
|
# GH20722
|
|
# Test whether loc accept uint64 max value as index.
|
|
s = pd.Series(
|
|
[1, 2], index=[np.iinfo("uint64").max - 1, np.iinfo("uint64").max]
|
|
)
|
|
|
|
result = s.loc[np.iinfo("uint64").max - 1]
|
|
expected = s.iloc[0]
|
|
assert result == expected
|
|
|
|
result = s.loc[[np.iinfo("uint64").max - 1]]
|
|
expected = s.iloc[[0]]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.loc[[np.iinfo("uint64").max - 1, np.iinfo("uint64").max]]
|
|
tm.assert_series_equal(result, s)
|
|
|
|
def test_loc_setitem_empty_append(self):
|
|
# GH6173, various appends to an empty dataframe
|
|
|
|
data = [1, 2, 3]
|
|
expected = DataFrame({"x": data, "y": [None] * len(data)})
|
|
|
|
# appends to fit length of data
|
|
df = DataFrame(columns=["x", "y"])
|
|
df.loc[:, "x"] = data
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
# only appends one value
|
|
expected = DataFrame({"x": [1.0], "y": [np.nan]})
|
|
df = DataFrame(columns=["x", "y"], dtype=np.float)
|
|
df.loc[0, "x"] = expected.loc[0, "x"]
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_loc_setitem_empty_append_raises(self):
|
|
# GH6173, various appends to an empty dataframe
|
|
|
|
data = [1, 2]
|
|
df = DataFrame(columns=["x", "y"])
|
|
msg = (
|
|
r"None of \[Int64Index\(\[0, 1\], dtype='int64'\)\] "
|
|
r"are in the \[index\]"
|
|
)
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[[0, 1], "x"] = data
|
|
|
|
msg = "cannot copy sequence with size 2 to array axis with dimension 0"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.loc[0:2, "x"] = data
|
|
|
|
def test_indexing_zerodim_np_array(self):
|
|
# GH24924
|
|
df = DataFrame([[1, 2], [3, 4]])
|
|
result = df.loc[np.array(0)]
|
|
s = pd.Series([1, 2], name=0)
|
|
tm.assert_series_equal(result, s)
|
|
|
|
def test_series_indexing_zerodim_np_array(self):
|
|
# GH24924
|
|
s = Series([1, 2])
|
|
result = s.loc[np.array(0)]
|
|
assert result == 1
|
|
|
|
def test_loc_reverse_assignment(self):
|
|
# GH26939
|
|
data = [1, 2, 3, 4, 5, 6] + [None] * 4
|
|
expected = Series(data, index=range(2010, 2020))
|
|
|
|
result = pd.Series(index=range(2010, 2020), dtype=np.float64)
|
|
result.loc[2015:2010:-1] = [6, 5, 4, 3, 2, 1]
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_series_loc_getitem_label_list_missing_values():
|
|
# gh-11428
|
|
key = np.array(
|
|
["2001-01-04", "2001-01-02", "2001-01-04", "2001-01-14"], dtype="datetime64"
|
|
)
|
|
s = Series([2, 5, 8, 11], date_range("2001-01-01", freq="D", periods=4))
|
|
with pytest.raises(KeyError, match="with any missing labels"):
|
|
s.loc[key]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"columns, column_key, expected_columns, check_column_type",
|
|
[
|
|
([2011, 2012, 2013], [2011, 2012], [0, 1], True),
|
|
([2011, 2012, "All"], [2011, 2012], [0, 1], False),
|
|
([2011, 2012, "All"], [2011, "All"], [0, 2], True),
|
|
],
|
|
)
|
|
def test_loc_getitem_label_list_integer_labels(
|
|
columns, column_key, expected_columns, check_column_type
|
|
):
|
|
# gh-14836
|
|
df = DataFrame(np.random.rand(3, 3), columns=columns, index=list("ABC"))
|
|
expected = df.iloc[:, expected_columns]
|
|
result = df.loc[["A", "B", "C"], column_key]
|
|
tm.assert_frame_equal(result, expected, check_column_type=check_column_type)
|
|
|
|
|
|
def test_loc_setitem_float_intindex():
|
|
# GH 8720
|
|
rand_data = np.random.randn(8, 4)
|
|
result = pd.DataFrame(rand_data)
|
|
result.loc[:, 0.5] = np.nan
|
|
expected_data = np.hstack((rand_data, np.array([np.nan] * 8).reshape(8, 1)))
|
|
expected = pd.DataFrame(expected_data, columns=[0.0, 1.0, 2.0, 3.0, 0.5])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = pd.DataFrame(rand_data)
|
|
result.loc[:, 0.5] = np.nan
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_loc_axis_1_slice():
|
|
# GH 10586
|
|
cols = [(yr, m) for yr in [2014, 2015] for m in [7, 8, 9, 10]]
|
|
df = pd.DataFrame(
|
|
np.ones((10, 8)),
|
|
index=tuple("ABCDEFGHIJ"),
|
|
columns=pd.MultiIndex.from_tuples(cols),
|
|
)
|
|
result = df.loc(axis=1)[(2014, 9):(2015, 8)]
|
|
expected = pd.DataFrame(
|
|
np.ones((10, 4)),
|
|
index=tuple("ABCDEFGHIJ"),
|
|
columns=pd.MultiIndex.from_tuples(
|
|
[(2014, 9), (2014, 10), (2015, 7), (2015, 8)]
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|