511 lines
14 KiB
Python
511 lines
14 KiB
Python
from datetime import datetime, timedelta
|
|
import operator
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import pytz
|
|
|
|
from pandas._libs.tslibs import iNaT
|
|
import pandas.compat as compat
|
|
|
|
from pandas.core.dtypes.common import is_datetime64_any_dtype
|
|
|
|
from pandas import (
|
|
DatetimeIndex,
|
|
Index,
|
|
NaT,
|
|
Period,
|
|
Series,
|
|
Timedelta,
|
|
TimedeltaIndex,
|
|
Timestamp,
|
|
isna,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray
|
|
from pandas.core.ops import roperator
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"nat,idx",
|
|
[
|
|
(Timestamp("NaT"), DatetimeIndex),
|
|
(Timedelta("NaT"), TimedeltaIndex),
|
|
(Period("NaT", freq="M"), PeriodArray),
|
|
],
|
|
)
|
|
def test_nat_fields(nat, idx):
|
|
|
|
for field in idx._field_ops:
|
|
# weekday is a property of DTI, but a method
|
|
# on NaT/Timestamp for compat with datetime
|
|
if field == "weekday":
|
|
continue
|
|
|
|
result = getattr(NaT, field)
|
|
assert np.isnan(result)
|
|
|
|
result = getattr(nat, field)
|
|
assert np.isnan(result)
|
|
|
|
for field in idx._bool_ops:
|
|
|
|
result = getattr(NaT, field)
|
|
assert result is False
|
|
|
|
result = getattr(nat, field)
|
|
assert result is False
|
|
|
|
|
|
def test_nat_vector_field_access():
|
|
idx = DatetimeIndex(["1/1/2000", None, None, "1/4/2000"])
|
|
|
|
for field in DatetimeIndex._field_ops:
|
|
# weekday is a property of DTI, but a method
|
|
# on NaT/Timestamp for compat with datetime
|
|
if field == "weekday":
|
|
continue
|
|
|
|
result = getattr(idx, field)
|
|
expected = Index([getattr(x, field) for x in idx])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
ser = Series(idx)
|
|
|
|
for field in DatetimeIndex._field_ops:
|
|
# weekday is a property of DTI, but a method
|
|
# on NaT/Timestamp for compat with datetime
|
|
if field == "weekday":
|
|
continue
|
|
|
|
result = getattr(ser.dt, field)
|
|
expected = [getattr(x, field) for x in idx]
|
|
tm.assert_series_equal(result, Series(expected))
|
|
|
|
for field in DatetimeIndex._bool_ops:
|
|
result = getattr(ser.dt, field)
|
|
expected = [getattr(x, field) for x in idx]
|
|
tm.assert_series_equal(result, Series(expected))
|
|
|
|
|
|
@pytest.mark.parametrize("klass", [Timestamp, Timedelta, Period])
|
|
@pytest.mark.parametrize("value", [None, np.nan, iNaT, float("nan"), NaT, "NaT", "nat"])
|
|
def test_identity(klass, value):
|
|
assert klass(value) is NaT
|
|
|
|
|
|
@pytest.mark.parametrize("klass", [Timestamp, Timedelta, Period])
|
|
@pytest.mark.parametrize("value", ["", "nat", "NAT", None, np.nan])
|
|
def test_equality(klass, value):
|
|
if klass is Period and value == "":
|
|
pytest.skip("Period cannot parse empty string")
|
|
|
|
assert klass(value).value == iNaT
|
|
|
|
|
|
@pytest.mark.parametrize("klass", [Timestamp, Timedelta])
|
|
@pytest.mark.parametrize("method", ["round", "floor", "ceil"])
|
|
@pytest.mark.parametrize("freq", ["s", "5s", "min", "5min", "h", "5h"])
|
|
def test_round_nat(klass, method, freq):
|
|
# see gh-14940
|
|
ts = klass("nat")
|
|
|
|
round_method = getattr(ts, method)
|
|
assert round_method(freq) is ts
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method",
|
|
[
|
|
"astimezone",
|
|
"combine",
|
|
"ctime",
|
|
"dst",
|
|
"fromordinal",
|
|
"fromtimestamp",
|
|
pytest.param(
|
|
"fromisocalendar",
|
|
marks=pytest.mark.skipif(
|
|
not compat.PY38,
|
|
reason="'fromisocalendar' was added in stdlib datetime in python 3.8",
|
|
),
|
|
),
|
|
"isocalendar",
|
|
"strftime",
|
|
"strptime",
|
|
"time",
|
|
"timestamp",
|
|
"timetuple",
|
|
"timetz",
|
|
"toordinal",
|
|
"tzname",
|
|
"utcfromtimestamp",
|
|
"utcnow",
|
|
"utcoffset",
|
|
"utctimetuple",
|
|
"timestamp",
|
|
],
|
|
)
|
|
def test_nat_methods_raise(method):
|
|
# see gh-9513, gh-17329
|
|
msg = f"NaTType does not support {method}"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
getattr(NaT, method)()
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["weekday", "isoweekday"])
|
|
def test_nat_methods_nan(method):
|
|
# see gh-9513, gh-17329
|
|
assert np.isnan(getattr(NaT, method)())
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method", ["date", "now", "replace", "today", "tz_convert", "tz_localize"]
|
|
)
|
|
def test_nat_methods_nat(method):
|
|
# see gh-8254, gh-9513, gh-17329
|
|
assert getattr(NaT, method)() is NaT
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"get_nat", [lambda x: NaT, lambda x: Timedelta(x), lambda x: Timestamp(x)]
|
|
)
|
|
def test_nat_iso_format(get_nat):
|
|
# see gh-12300
|
|
assert get_nat("NaT").isoformat() == "NaT"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"klass,expected",
|
|
[
|
|
(Timestamp, ["freqstr", "normalize", "to_julian_date", "to_period", "tz"]),
|
|
(
|
|
Timedelta,
|
|
[
|
|
"components",
|
|
"delta",
|
|
"is_populated",
|
|
"resolution_string",
|
|
"to_pytimedelta",
|
|
"to_timedelta64",
|
|
"view",
|
|
],
|
|
),
|
|
],
|
|
)
|
|
def test_missing_public_nat_methods(klass, expected):
|
|
# see gh-17327
|
|
#
|
|
# NaT should have *most* of the Timestamp and Timedelta methods.
|
|
# Here, we check which public methods NaT does not have. We
|
|
# ignore any missing private methods.
|
|
nat_names = dir(NaT)
|
|
klass_names = dir(klass)
|
|
|
|
missing = [x for x in klass_names if x not in nat_names and not x.startswith("_")]
|
|
missing.sort()
|
|
|
|
assert missing == expected
|
|
|
|
|
|
def _get_overlap_public_nat_methods(klass, as_tuple=False):
|
|
"""
|
|
Get overlapping public methods between NaT and another class.
|
|
|
|
Parameters
|
|
----------
|
|
klass : type
|
|
The class to compare with NaT
|
|
as_tuple : bool, default False
|
|
Whether to return a list of tuples of the form (klass, method).
|
|
|
|
Returns
|
|
-------
|
|
overlap : list
|
|
"""
|
|
nat_names = dir(NaT)
|
|
klass_names = dir(klass)
|
|
|
|
overlap = [
|
|
x
|
|
for x in nat_names
|
|
if x in klass_names and not x.startswith("_") and callable(getattr(klass, x))
|
|
]
|
|
|
|
# Timestamp takes precedence over Timedelta in terms of overlap.
|
|
if klass is Timedelta:
|
|
ts_names = dir(Timestamp)
|
|
overlap = [x for x in overlap if x not in ts_names]
|
|
|
|
if as_tuple:
|
|
overlap = [(klass, method) for method in overlap]
|
|
|
|
overlap.sort()
|
|
return overlap
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"klass,expected",
|
|
[
|
|
(
|
|
Timestamp,
|
|
[
|
|
"astimezone",
|
|
"ceil",
|
|
"combine",
|
|
"ctime",
|
|
"date",
|
|
"day_name",
|
|
"dst",
|
|
"floor",
|
|
"fromisocalendar",
|
|
"fromisoformat",
|
|
"fromordinal",
|
|
"fromtimestamp",
|
|
"isocalendar",
|
|
"isoformat",
|
|
"isoweekday",
|
|
"month_name",
|
|
"now",
|
|
"replace",
|
|
"round",
|
|
"strftime",
|
|
"strptime",
|
|
"time",
|
|
"timestamp",
|
|
"timetuple",
|
|
"timetz",
|
|
"to_datetime64",
|
|
"to_numpy",
|
|
"to_pydatetime",
|
|
"today",
|
|
"toordinal",
|
|
"tz_convert",
|
|
"tz_localize",
|
|
"tzname",
|
|
"utcfromtimestamp",
|
|
"utcnow",
|
|
"utcoffset",
|
|
"utctimetuple",
|
|
"weekday",
|
|
],
|
|
),
|
|
(Timedelta, ["total_seconds"]),
|
|
],
|
|
)
|
|
def test_overlap_public_nat_methods(klass, expected):
|
|
# see gh-17327
|
|
#
|
|
# NaT should have *most* of the Timestamp and Timedelta methods.
|
|
# In case when Timestamp, Timedelta, and NaT are overlap, the overlap
|
|
# is considered to be with Timestamp and NaT, not Timedelta.
|
|
|
|
# "fromisoformat" was introduced in 3.7
|
|
if klass is Timestamp and not compat.PY37:
|
|
expected.remove("fromisoformat")
|
|
|
|
# "fromisocalendar" was introduced in 3.8
|
|
if klass is Timestamp and not compat.PY38:
|
|
expected.remove("fromisocalendar")
|
|
|
|
assert _get_overlap_public_nat_methods(klass) == expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"compare",
|
|
(
|
|
_get_overlap_public_nat_methods(Timestamp, True)
|
|
+ _get_overlap_public_nat_methods(Timedelta, True)
|
|
),
|
|
)
|
|
def test_nat_doc_strings(compare):
|
|
# see gh-17327
|
|
#
|
|
# The docstrings for overlapping methods should match.
|
|
klass, method = compare
|
|
klass_doc = getattr(klass, method).__doc__
|
|
|
|
nat_doc = getattr(NaT, method).__doc__
|
|
assert klass_doc == nat_doc
|
|
|
|
|
|
_ops = {
|
|
"left_plus_right": lambda a, b: a + b,
|
|
"right_plus_left": lambda a, b: b + a,
|
|
"left_minus_right": lambda a, b: a - b,
|
|
"right_minus_left": lambda a, b: b - a,
|
|
"left_times_right": lambda a, b: a * b,
|
|
"right_times_left": lambda a, b: b * a,
|
|
"left_div_right": lambda a, b: a / b,
|
|
"right_div_left": lambda a, b: b / a,
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize("op_name", list(_ops.keys()))
|
|
@pytest.mark.parametrize(
|
|
"value,val_type",
|
|
[
|
|
(2, "scalar"),
|
|
(1.5, "floating"),
|
|
(np.nan, "floating"),
|
|
("foo", "str"),
|
|
(timedelta(3600), "timedelta"),
|
|
(Timedelta("5s"), "timedelta"),
|
|
(datetime(2014, 1, 1), "timestamp"),
|
|
(Timestamp("2014-01-01"), "timestamp"),
|
|
(Timestamp("2014-01-01", tz="UTC"), "timestamp"),
|
|
(Timestamp("2014-01-01", tz="US/Eastern"), "timestamp"),
|
|
(pytz.timezone("Asia/Tokyo").localize(datetime(2014, 1, 1)), "timestamp"),
|
|
],
|
|
)
|
|
def test_nat_arithmetic_scalar(op_name, value, val_type):
|
|
# see gh-6873
|
|
invalid_ops = {
|
|
"scalar": {"right_div_left"},
|
|
"floating": {
|
|
"right_div_left",
|
|
"left_minus_right",
|
|
"right_minus_left",
|
|
"left_plus_right",
|
|
"right_plus_left",
|
|
},
|
|
"str": set(_ops.keys()),
|
|
"timedelta": {"left_times_right", "right_times_left"},
|
|
"timestamp": {
|
|
"left_times_right",
|
|
"right_times_left",
|
|
"left_div_right",
|
|
"right_div_left",
|
|
},
|
|
}
|
|
|
|
op = _ops[op_name]
|
|
|
|
if op_name in invalid_ops.get(val_type, set()):
|
|
if (
|
|
val_type == "timedelta"
|
|
and "times" in op_name
|
|
and isinstance(value, Timedelta)
|
|
):
|
|
msg = "Cannot multiply"
|
|
elif val_type == "str":
|
|
# un-specific check here because the message comes from str
|
|
# and varies by method
|
|
msg = (
|
|
"can only concatenate str|"
|
|
"unsupported operand type|"
|
|
"can't multiply sequence|"
|
|
"Can't convert 'NaTType'|"
|
|
"must be str, not NaTType"
|
|
)
|
|
else:
|
|
msg = "unsupported operand type"
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
op(NaT, value)
|
|
else:
|
|
if val_type == "timedelta" and "div" in op_name:
|
|
expected = np.nan
|
|
else:
|
|
expected = NaT
|
|
|
|
assert op(NaT, value) is expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"val,expected", [(np.nan, NaT), (NaT, np.nan), (np.timedelta64("NaT"), np.nan)]
|
|
)
|
|
def test_nat_rfloordiv_timedelta(val, expected):
|
|
# see gh-#18846
|
|
#
|
|
# See also test_timedelta.TestTimedeltaArithmetic.test_floordiv
|
|
td = Timedelta(hours=3, minutes=4)
|
|
assert td // val is expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"op_name",
|
|
["left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left"],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"value",
|
|
[
|
|
DatetimeIndex(["2011-01-01", "2011-01-02"], name="x"),
|
|
DatetimeIndex(["2011-01-01", "2011-01-02"], tz="US/Eastern", name="x"),
|
|
DatetimeArray._from_sequence(["2011-01-01", "2011-01-02"]),
|
|
DatetimeArray._from_sequence(["2011-01-01", "2011-01-02"], tz="US/Pacific"),
|
|
TimedeltaIndex(["1 day", "2 day"], name="x"),
|
|
],
|
|
)
|
|
def test_nat_arithmetic_index(op_name, value):
|
|
# see gh-11718
|
|
exp_name = "x"
|
|
exp_data = [NaT] * 2
|
|
|
|
if is_datetime64_any_dtype(value.dtype) and "plus" in op_name:
|
|
expected = DatetimeIndex(exp_data, tz=value.tz, name=exp_name)
|
|
else:
|
|
expected = TimedeltaIndex(exp_data, name=exp_name)
|
|
|
|
if not isinstance(value, Index):
|
|
expected = expected.array
|
|
|
|
op = _ops[op_name]
|
|
result = op(NaT, value)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"op_name",
|
|
["left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left"],
|
|
)
|
|
@pytest.mark.parametrize("box", [TimedeltaIndex, Series, TimedeltaArray._from_sequence])
|
|
def test_nat_arithmetic_td64_vector(op_name, box):
|
|
# see gh-19124
|
|
vec = box(["1 day", "2 day"], dtype="timedelta64[ns]")
|
|
box_nat = box([NaT, NaT], dtype="timedelta64[ns]")
|
|
tm.assert_equal(_ops[op_name](vec, NaT), box_nat)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype,op,out_dtype",
|
|
[
|
|
("datetime64[ns]", operator.add, "datetime64[ns]"),
|
|
("datetime64[ns]", roperator.radd, "datetime64[ns]"),
|
|
("datetime64[ns]", operator.sub, "timedelta64[ns]"),
|
|
("datetime64[ns]", roperator.rsub, "timedelta64[ns]"),
|
|
("timedelta64[ns]", operator.add, "datetime64[ns]"),
|
|
("timedelta64[ns]", roperator.radd, "datetime64[ns]"),
|
|
("timedelta64[ns]", operator.sub, "datetime64[ns]"),
|
|
("timedelta64[ns]", roperator.rsub, "timedelta64[ns]"),
|
|
],
|
|
)
|
|
def test_nat_arithmetic_ndarray(dtype, op, out_dtype):
|
|
other = np.arange(10).astype(dtype)
|
|
result = op(NaT, other)
|
|
|
|
expected = np.empty(other.shape, dtype=out_dtype)
|
|
expected.fill("NaT")
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
def test_nat_pinned_docstrings():
|
|
# see gh-17327
|
|
assert NaT.ctime.__doc__ == datetime.ctime.__doc__
|
|
|
|
|
|
def test_to_numpy_alias():
|
|
# GH 24653: alias .to_numpy() for scalars
|
|
expected = NaT.to_datetime64()
|
|
result = NaT.to_numpy()
|
|
|
|
assert isna(expected) and isna(result)
|
|
|
|
|
|
@pytest.mark.parametrize("other", [Timedelta(0), Timestamp(0)])
|
|
def test_nat_comparisons(compare_operators_no_eq_ne, other):
|
|
# GH 26039
|
|
assert getattr(NaT, compare_operators_no_eq_ne)(other) is False
|
|
assert getattr(other, compare_operators_no_eq_ne)(NaT) is False
|