737 lines
25 KiB
Python
737 lines
25 KiB
Python
from collections import OrderedDict
|
|
import pydoc
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.util._test_decorators import async_mark
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Categorical,
|
|
DataFrame,
|
|
DatetimeIndex,
|
|
Index,
|
|
Series,
|
|
Timedelta,
|
|
TimedeltaIndex,
|
|
Timestamp,
|
|
date_range,
|
|
period_range,
|
|
timedelta_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import PeriodArray
|
|
|
|
import pandas.io.formats.printing as printing
|
|
|
|
|
|
class TestSeriesMisc:
|
|
def test_scalarop_preserve_name(self, datetime_series):
|
|
result = datetime_series * 2
|
|
assert result.name == datetime_series.name
|
|
|
|
def test_copy_name(self, datetime_series):
|
|
result = datetime_series.copy()
|
|
assert result.name == datetime_series.name
|
|
|
|
def test_copy_index_name_checking(self, datetime_series):
|
|
# don't want to be able to modify the index stored elsewhere after
|
|
# making a copy
|
|
|
|
datetime_series.index.name = None
|
|
assert datetime_series.index.name is None
|
|
assert datetime_series is datetime_series
|
|
|
|
cp = datetime_series.copy()
|
|
cp.index.name = "foo"
|
|
printing.pprint_thing(datetime_series.index.name)
|
|
assert datetime_series.index.name is None
|
|
|
|
def test_append_preserve_name(self, datetime_series):
|
|
result = datetime_series[:5].append(datetime_series[5:])
|
|
assert result.name == datetime_series.name
|
|
|
|
def test_binop_maybe_preserve_name(self, datetime_series):
|
|
# names match, preserve
|
|
result = datetime_series * datetime_series
|
|
assert result.name == datetime_series.name
|
|
result = datetime_series.mul(datetime_series)
|
|
assert result.name == datetime_series.name
|
|
|
|
result = datetime_series * datetime_series[:-2]
|
|
assert result.name == datetime_series.name
|
|
|
|
# names don't match, don't preserve
|
|
cp = datetime_series.copy()
|
|
cp.name = "something else"
|
|
result = datetime_series + cp
|
|
assert result.name is None
|
|
result = datetime_series.add(cp)
|
|
assert result.name is None
|
|
|
|
ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"]
|
|
ops = ops + ["r" + op for op in ops]
|
|
for op in ops:
|
|
# names match, preserve
|
|
s = datetime_series.copy()
|
|
result = getattr(s, op)(s)
|
|
assert result.name == datetime_series.name
|
|
|
|
# names don't match, don't preserve
|
|
cp = datetime_series.copy()
|
|
cp.name = "changed"
|
|
result = getattr(s, op)(cp)
|
|
assert result.name is None
|
|
|
|
def test_combine_first_name(self, datetime_series):
|
|
result = datetime_series.combine_first(datetime_series[:5])
|
|
assert result.name == datetime_series.name
|
|
|
|
def test_getitem_preserve_name(self, datetime_series):
|
|
result = datetime_series[datetime_series > 0]
|
|
assert result.name == datetime_series.name
|
|
|
|
result = datetime_series[[0, 2, 4]]
|
|
assert result.name == datetime_series.name
|
|
|
|
result = datetime_series[5:10]
|
|
assert result.name == datetime_series.name
|
|
|
|
def test_pickle_datetimes(self, datetime_series):
|
|
unp_ts = self._pickle_roundtrip(datetime_series)
|
|
tm.assert_series_equal(unp_ts, datetime_series)
|
|
|
|
def test_pickle_strings(self, string_series):
|
|
unp_series = self._pickle_roundtrip(string_series)
|
|
tm.assert_series_equal(unp_series, string_series)
|
|
|
|
def _pickle_roundtrip(self, obj):
|
|
|
|
with tm.ensure_clean() as path:
|
|
obj.to_pickle(path)
|
|
unpickled = pd.read_pickle(path)
|
|
return unpickled
|
|
|
|
def test_sort_index_name(self, datetime_series):
|
|
result = datetime_series.sort_index(ascending=False)
|
|
assert result.name == datetime_series.name
|
|
|
|
def test_constructor_dict(self):
|
|
d = {"a": 0.0, "b": 1.0, "c": 2.0}
|
|
result = Series(d)
|
|
expected = Series(d, index=sorted(d.keys()))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = Series(d, index=["b", "c", "d", "a"])
|
|
expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_constructor_subclass_dict(self, dict_subclass):
|
|
data = dict_subclass((x, 10.0 * x) for x in range(10))
|
|
series = Series(data)
|
|
expected = Series(dict(data.items()))
|
|
tm.assert_series_equal(series, expected)
|
|
|
|
def test_constructor_ordereddict(self):
|
|
# GH3283
|
|
data = OrderedDict(
|
|
("col{i}".format(i=i), np.random.random()) for i in range(12)
|
|
)
|
|
|
|
series = Series(data)
|
|
expected = Series(list(data.values()), list(data.keys()))
|
|
tm.assert_series_equal(series, expected)
|
|
|
|
# Test with subclass
|
|
class A(OrderedDict):
|
|
pass
|
|
|
|
series = Series(A(data))
|
|
tm.assert_series_equal(series, expected)
|
|
|
|
def test_constructor_dict_multiindex(self):
|
|
d = {("a", "a"): 0.0, ("b", "a"): 1.0, ("b", "c"): 2.0}
|
|
_d = sorted(d.items())
|
|
result = Series(d)
|
|
expected = Series(
|
|
[x[1] for x in _d], index=pd.MultiIndex.from_tuples([x[0] for x in _d])
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
d["z"] = 111.0
|
|
_d.insert(0, ("z", d["z"]))
|
|
result = Series(d)
|
|
expected = Series(
|
|
[x[1] for x in _d], index=pd.Index([x[0] for x in _d], tupleize_cols=False)
|
|
)
|
|
result = result.reindex(index=expected.index)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_constructor_dict_timedelta_index(self):
|
|
# GH #12169 : Resample category data with timedelta index
|
|
# construct Series from dict as data and TimedeltaIndex as index
|
|
# will result NaN in result Series data
|
|
expected = Series(
|
|
data=["A", "B", "C"], index=pd.to_timedelta([0, 10, 20], unit="s")
|
|
)
|
|
|
|
result = Series(
|
|
data={
|
|
pd.to_timedelta(0, unit="s"): "A",
|
|
pd.to_timedelta(10, unit="s"): "B",
|
|
pd.to_timedelta(20, unit="s"): "C",
|
|
},
|
|
index=pd.to_timedelta([0, 10, 20], unit="s"),
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_sparse_accessor_updates_on_inplace(self):
|
|
s = pd.Series([1, 1, 2, 3], dtype="Sparse[int]")
|
|
s.drop([0, 1], inplace=True)
|
|
assert s.sparse.density == 1.0
|
|
|
|
def test_tab_completion(self):
|
|
# GH 9910
|
|
s = Series(list("abcd"))
|
|
# Series of str values should have .str but not .dt/.cat in __dir__
|
|
assert "str" in dir(s)
|
|
assert "dt" not in dir(s)
|
|
assert "cat" not in dir(s)
|
|
|
|
# similarly for .dt
|
|
s = Series(date_range("1/1/2015", periods=5))
|
|
assert "dt" in dir(s)
|
|
assert "str" not in dir(s)
|
|
assert "cat" not in dir(s)
|
|
|
|
# Similarly for .cat, but with the twist that str and dt should be
|
|
# there if the categories are of that type first cat and str.
|
|
s = Series(list("abbcd"), dtype="category")
|
|
assert "cat" in dir(s)
|
|
assert "str" in dir(s) # as it is a string categorical
|
|
assert "dt" not in dir(s)
|
|
|
|
# similar to cat and str
|
|
s = Series(date_range("1/1/2015", periods=5)).astype("category")
|
|
assert "cat" in dir(s)
|
|
assert "str" not in dir(s)
|
|
assert "dt" in dir(s) # as it is a datetime categorical
|
|
|
|
def test_tab_completion_with_categorical(self):
|
|
# test the tab completion display
|
|
ok_for_cat = [
|
|
"categories",
|
|
"codes",
|
|
"ordered",
|
|
"set_categories",
|
|
"add_categories",
|
|
"remove_categories",
|
|
"rename_categories",
|
|
"reorder_categories",
|
|
"remove_unused_categories",
|
|
"as_ordered",
|
|
"as_unordered",
|
|
]
|
|
|
|
def get_dir(s):
|
|
results = [r for r in s.cat.__dir__() if not r.startswith("_")]
|
|
return sorted(set(results))
|
|
|
|
s = Series(list("aabbcde")).astype("category")
|
|
results = get_dir(s)
|
|
tm.assert_almost_equal(results, sorted(set(ok_for_cat)))
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
tm.makeUnicodeIndex(10),
|
|
tm.makeStringIndex(10),
|
|
tm.makeCategoricalIndex(10),
|
|
Index(["foo", "bar", "baz"] * 2),
|
|
tm.makeDateIndex(10),
|
|
tm.makePeriodIndex(10),
|
|
tm.makeTimedeltaIndex(10),
|
|
tm.makeIntIndex(10),
|
|
tm.makeUIntIndex(10),
|
|
tm.makeIntIndex(10),
|
|
tm.makeFloatIndex(10),
|
|
Index([True, False]),
|
|
Index(["a{}".format(i) for i in range(101)]),
|
|
pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
|
|
pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
|
|
],
|
|
)
|
|
def test_index_tab_completion(self, index):
|
|
# dir contains string-like values of the Index.
|
|
s = pd.Series(index=index, dtype=object)
|
|
dir_s = dir(s)
|
|
for i, x in enumerate(s.index.unique(level=0)):
|
|
if i < 100:
|
|
assert not isinstance(x, str) or not x.isidentifier() or x in dir_s
|
|
else:
|
|
assert x not in dir_s
|
|
|
|
def test_not_hashable(self):
|
|
s_empty = Series(dtype=object)
|
|
s = Series([1])
|
|
msg = "'Series' objects are mutable, thus they cannot be hashed"
|
|
with pytest.raises(TypeError, match=msg):
|
|
hash(s_empty)
|
|
with pytest.raises(TypeError, match=msg):
|
|
hash(s)
|
|
|
|
def test_contains(self, datetime_series):
|
|
tm.assert_contains_all(datetime_series.index, datetime_series)
|
|
|
|
def test_iter_datetimes(self, datetime_series):
|
|
for i, val in enumerate(datetime_series):
|
|
assert val == datetime_series[i]
|
|
|
|
def test_iter_strings(self, string_series):
|
|
for i, val in enumerate(string_series):
|
|
assert val == string_series[i]
|
|
|
|
def test_keys(self, datetime_series):
|
|
# HACK: By doing this in two stages, we avoid 2to3 wrapping the call
|
|
# to .keys() in a list()
|
|
getkeys = datetime_series.keys
|
|
assert getkeys() is datetime_series.index
|
|
|
|
def test_values(self, datetime_series):
|
|
tm.assert_almost_equal(
|
|
datetime_series.values, datetime_series, check_dtype=False
|
|
)
|
|
|
|
def test_iteritems_datetimes(self, datetime_series):
|
|
for idx, val in datetime_series.iteritems():
|
|
assert val == datetime_series[idx]
|
|
|
|
def test_iteritems_strings(self, string_series):
|
|
for idx, val in string_series.iteritems():
|
|
assert val == string_series[idx]
|
|
|
|
# assert is lazy (generators don't define reverse, lists do)
|
|
assert not hasattr(string_series.iteritems(), "reverse")
|
|
|
|
def test_items_datetimes(self, datetime_series):
|
|
for idx, val in datetime_series.items():
|
|
assert val == datetime_series[idx]
|
|
|
|
def test_items_strings(self, string_series):
|
|
for idx, val in string_series.items():
|
|
assert val == string_series[idx]
|
|
|
|
# assert is lazy (generators don't define reverse, lists do)
|
|
assert not hasattr(string_series.items(), "reverse")
|
|
|
|
def test_raise_on_info(self):
|
|
s = Series(np.random.randn(10))
|
|
msg = "'Series' object has no attribute 'info'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
s.info()
|
|
|
|
def test_copy(self):
|
|
|
|
for deep in [None, False, True]:
|
|
s = Series(np.arange(10), dtype="float64")
|
|
|
|
# default deep is True
|
|
if deep is None:
|
|
s2 = s.copy()
|
|
else:
|
|
s2 = s.copy(deep=deep)
|
|
|
|
s2[::2] = np.NaN
|
|
|
|
if deep is None or deep is True:
|
|
# Did not modify original Series
|
|
assert np.isnan(s2[0])
|
|
assert not np.isnan(s[0])
|
|
else:
|
|
# we DID modify the original Series
|
|
assert np.isnan(s2[0])
|
|
assert np.isnan(s[0])
|
|
|
|
def test_copy_tzaware(self):
|
|
# GH#11794
|
|
# copy of tz-aware
|
|
expected = Series([Timestamp("2012/01/01", tz="UTC")])
|
|
expected2 = Series([Timestamp("1999/01/01", tz="UTC")])
|
|
|
|
for deep in [None, False, True]:
|
|
|
|
s = Series([Timestamp("2012/01/01", tz="UTC")])
|
|
|
|
if deep is None:
|
|
s2 = s.copy()
|
|
else:
|
|
s2 = s.copy(deep=deep)
|
|
|
|
s2[0] = pd.Timestamp("1999/01/01", tz="UTC")
|
|
|
|
# default deep is True
|
|
if deep is None or deep is True:
|
|
# Did not modify original Series
|
|
tm.assert_series_equal(s2, expected2)
|
|
tm.assert_series_equal(s, expected)
|
|
else:
|
|
# we DID modify the original Series
|
|
tm.assert_series_equal(s2, expected2)
|
|
tm.assert_series_equal(s, expected2)
|
|
|
|
def test_axis_alias(self):
|
|
s = Series([1, 2, np.nan])
|
|
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
|
|
assert s.dropna().sum("rows") == 3
|
|
assert s._get_axis_number("rows") == 0
|
|
assert s._get_axis_name("rows") == "index"
|
|
|
|
def test_class_axis(self):
|
|
# https://github.com/pandas-dev/pandas/issues/18147
|
|
# no exception and no empty docstring
|
|
assert pydoc.getdoc(Series.index)
|
|
|
|
def test_numpy_unique(self, datetime_series):
|
|
# it works!
|
|
np.unique(datetime_series)
|
|
|
|
def test_item(self):
|
|
s = Series([1])
|
|
result = s.item()
|
|
assert result == 1
|
|
assert result == s.iloc[0]
|
|
assert isinstance(result, int) # i.e. not np.int64
|
|
|
|
ser = Series([0.5], index=[3])
|
|
result = ser.item()
|
|
assert isinstance(result, float)
|
|
assert result == 0.5
|
|
|
|
ser = Series([1, 2])
|
|
msg = "can only convert an array of size 1"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.item()
|
|
|
|
dti = pd.date_range("2016-01-01", periods=2)
|
|
with pytest.raises(ValueError, match=msg):
|
|
dti.item()
|
|
with pytest.raises(ValueError, match=msg):
|
|
Series(dti).item()
|
|
|
|
val = dti[:1].item()
|
|
assert isinstance(val, Timestamp)
|
|
val = Series(dti)[:1].item()
|
|
assert isinstance(val, Timestamp)
|
|
|
|
tdi = dti - dti
|
|
with pytest.raises(ValueError, match=msg):
|
|
tdi.item()
|
|
with pytest.raises(ValueError, match=msg):
|
|
Series(tdi).item()
|
|
|
|
val = tdi[:1].item()
|
|
assert isinstance(val, Timedelta)
|
|
val = Series(tdi)[:1].item()
|
|
assert isinstance(val, Timedelta)
|
|
|
|
# Case where ser[0] would not work
|
|
ser = Series(dti, index=[5, 6])
|
|
val = ser[:1].item()
|
|
assert val == dti[0]
|
|
|
|
def test_ndarray_compat(self):
|
|
|
|
# test numpy compat with Series as sub-class of NDFrame
|
|
tsdf = DataFrame(
|
|
np.random.randn(1000, 3),
|
|
columns=["A", "B", "C"],
|
|
index=date_range("1/1/2000", periods=1000),
|
|
)
|
|
|
|
def f(x):
|
|
return x[x.idxmax()]
|
|
|
|
result = tsdf.apply(f)
|
|
expected = tsdf.max()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# using an ndarray like function
|
|
s = Series(np.random.randn(10))
|
|
result = Series(np.ones_like(s))
|
|
expected = Series(1, index=range(10), dtype="float64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# ravel
|
|
s = Series(np.random.randn(10))
|
|
tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))
|
|
|
|
def test_str_accessor_updates_on_inplace(self):
|
|
s = pd.Series(list("abc"))
|
|
s.drop([0], inplace=True)
|
|
assert len(s.str.lower()) == 2
|
|
|
|
def test_str_attribute(self):
|
|
# GH9068
|
|
methods = ["strip", "rstrip", "lstrip"]
|
|
s = Series([" jack", "jill ", " jesse ", "frank"])
|
|
for method in methods:
|
|
expected = Series([getattr(str, method)(x) for x in s.values])
|
|
tm.assert_series_equal(getattr(Series.str, method)(s.str), expected)
|
|
|
|
# str accessor only valid with string values
|
|
s = Series(range(5))
|
|
with pytest.raises(AttributeError, match="only use .str accessor"):
|
|
s.str.repeat(2)
|
|
|
|
def test_empty_method(self):
|
|
s_empty = pd.Series(dtype=object)
|
|
assert s_empty.empty
|
|
|
|
s2 = pd.Series(index=[1], dtype=object)
|
|
for full_series in [pd.Series([1]), s2]:
|
|
assert not full_series.empty
|
|
|
|
@async_mark()
|
|
async def test_tab_complete_warning(self, ip):
|
|
# https://github.com/pandas-dev/pandas/issues/16409
|
|
pytest.importorskip("IPython", minversion="6.0.0")
|
|
from IPython.core.completer import provisionalcompleter
|
|
|
|
code = "import pandas as pd; s = pd.Series()"
|
|
await ip.run_code(code)
|
|
with tm.assert_produces_warning(None):
|
|
with provisionalcompleter("ignore"):
|
|
list(ip.Completer.completions("s.", 1))
|
|
|
|
def test_integer_series_size(self):
|
|
# GH 25580
|
|
s = Series(range(9))
|
|
assert s.size == 9
|
|
s = Series(range(9), dtype="Int64")
|
|
assert s.size == 9
|
|
|
|
def test_attrs(self):
|
|
s = pd.Series([0, 1], name="abc")
|
|
assert s.attrs == {}
|
|
s.attrs["version"] = 1
|
|
result = s + 1
|
|
assert result.attrs == {"version": 1}
|
|
|
|
|
|
class TestCategoricalSeries:
|
|
@pytest.mark.parametrize(
|
|
"method",
|
|
[
|
|
lambda x: x.cat.set_categories([1, 2, 3]),
|
|
lambda x: x.cat.reorder_categories([2, 3, 1], ordered=True),
|
|
lambda x: x.cat.rename_categories([1, 2, 3]),
|
|
lambda x: x.cat.remove_unused_categories(),
|
|
lambda x: x.cat.remove_categories([2]),
|
|
lambda x: x.cat.add_categories([4]),
|
|
lambda x: x.cat.as_ordered(),
|
|
lambda x: x.cat.as_unordered(),
|
|
],
|
|
)
|
|
def test_getname_categorical_accessor(self, method):
|
|
# GH 17509
|
|
s = Series([1, 2, 3], name="A").astype("category")
|
|
expected = "A"
|
|
result = method(s).name
|
|
assert result == expected
|
|
|
|
def test_cat_accessor(self):
|
|
s = Series(Categorical(["a", "b", np.nan, "a"]))
|
|
tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
|
|
assert not s.cat.ordered, False
|
|
|
|
exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"])
|
|
s.cat.set_categories(["b", "a"], inplace=True)
|
|
tm.assert_categorical_equal(s.values, exp)
|
|
|
|
res = s.cat.set_categories(["b", "a"])
|
|
tm.assert_categorical_equal(res.values, exp)
|
|
|
|
s[:] = "a"
|
|
s = s.cat.remove_unused_categories()
|
|
tm.assert_index_equal(s.cat.categories, Index(["a"]))
|
|
|
|
def test_cat_accessor_api(self):
|
|
# GH 9322
|
|
from pandas.core.arrays.categorical import CategoricalAccessor
|
|
|
|
assert Series.cat is CategoricalAccessor
|
|
s = Series(list("aabbcde")).astype("category")
|
|
assert isinstance(s.cat, CategoricalAccessor)
|
|
|
|
invalid = Series([1])
|
|
with pytest.raises(AttributeError, match="only use .cat accessor"):
|
|
invalid.cat
|
|
assert not hasattr(invalid, "cat")
|
|
|
|
def test_cat_accessor_no_new_attributes(self):
|
|
# https://github.com/pandas-dev/pandas/issues/10673
|
|
c = Series(list("aabbcde")).astype("category")
|
|
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
|
|
c.cat.xlabel = "a"
|
|
|
|
def test_cat_accessor_updates_on_inplace(self):
|
|
s = Series(list("abc")).astype("category")
|
|
s.drop(0, inplace=True)
|
|
s.cat.remove_unused_categories(inplace=True)
|
|
assert len(s.cat.categories) == 2
|
|
|
|
def test_categorical_delegations(self):
|
|
|
|
# invalid accessor
|
|
msg = r"Can only use \.cat accessor with a 'category' dtype"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
Series([1, 2, 3]).cat
|
|
with pytest.raises(AttributeError, match=msg):
|
|
Series([1, 2, 3]).cat()
|
|
with pytest.raises(AttributeError, match=msg):
|
|
Series(["a", "b", "c"]).cat
|
|
with pytest.raises(AttributeError, match=msg):
|
|
Series(np.arange(5.0)).cat
|
|
with pytest.raises(AttributeError, match=msg):
|
|
Series([Timestamp("20130101")]).cat
|
|
|
|
# Series should delegate calls to '.categories', '.codes', '.ordered'
|
|
# and the methods '.set_categories()' 'drop_unused_categories()' to the
|
|
# categorical
|
|
s = Series(Categorical(["a", "b", "c", "a"], ordered=True))
|
|
exp_categories = Index(["a", "b", "c"])
|
|
tm.assert_index_equal(s.cat.categories, exp_categories)
|
|
s.cat.categories = [1, 2, 3]
|
|
exp_categories = Index([1, 2, 3])
|
|
tm.assert_index_equal(s.cat.categories, exp_categories)
|
|
|
|
exp_codes = Series([0, 1, 2, 0], dtype="int8")
|
|
tm.assert_series_equal(s.cat.codes, exp_codes)
|
|
|
|
assert s.cat.ordered
|
|
s = s.cat.as_unordered()
|
|
assert not s.cat.ordered
|
|
s.cat.as_ordered(inplace=True)
|
|
assert s.cat.ordered
|
|
|
|
# reorder
|
|
s = Series(Categorical(["a", "b", "c", "a"], ordered=True))
|
|
exp_categories = Index(["c", "b", "a"])
|
|
exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_)
|
|
s = s.cat.set_categories(["c", "b", "a"])
|
|
tm.assert_index_equal(s.cat.categories, exp_categories)
|
|
tm.assert_numpy_array_equal(s.values.__array__(), exp_values)
|
|
tm.assert_numpy_array_equal(s.__array__(), exp_values)
|
|
|
|
# remove unused categories
|
|
s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c"]))
|
|
exp_categories = Index(["a", "b"])
|
|
exp_values = np.array(["a", "b", "b", "a"], dtype=np.object_)
|
|
s = s.cat.remove_unused_categories()
|
|
tm.assert_index_equal(s.cat.categories, exp_categories)
|
|
tm.assert_numpy_array_equal(s.values.__array__(), exp_values)
|
|
tm.assert_numpy_array_equal(s.__array__(), exp_values)
|
|
|
|
# This method is likely to be confused, so test that it raises an error
|
|
# on wrong inputs:
|
|
msg = "'Series' object has no attribute 'set_categories'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
s.set_categories([4, 3, 2, 1])
|
|
|
|
# right: s.cat.set_categories([4,3,2,1])
|
|
|
|
# GH18862 (let Series.cat.rename_categories take callables)
|
|
s = Series(Categorical(["a", "b", "c", "a"], ordered=True))
|
|
result = s.cat.rename_categories(lambda x: x.upper())
|
|
expected = Series(
|
|
Categorical(["A", "B", "C", "A"], categories=["A", "B", "C"], ordered=True)
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_dt_accessor_api_for_categorical(self):
|
|
# https://github.com/pandas-dev/pandas/issues/10661
|
|
from pandas.core.indexes.accessors import Properties
|
|
|
|
s_dr = Series(date_range("1/1/2015", periods=5, tz="MET"))
|
|
c_dr = s_dr.astype("category")
|
|
|
|
s_pr = Series(period_range("1/1/2015", freq="D", periods=5))
|
|
c_pr = s_pr.astype("category")
|
|
|
|
s_tdr = Series(timedelta_range("1 days", "10 days"))
|
|
c_tdr = s_tdr.astype("category")
|
|
|
|
# only testing field (like .day)
|
|
# and bool (is_month_start)
|
|
get_ops = lambda x: x._datetimelike_ops
|
|
|
|
test_data = [
|
|
("Datetime", get_ops(DatetimeIndex), s_dr, c_dr),
|
|
("Period", get_ops(PeriodArray), s_pr, c_pr),
|
|
("Timedelta", get_ops(TimedeltaIndex), s_tdr, c_tdr),
|
|
]
|
|
|
|
assert isinstance(c_dr.dt, Properties)
|
|
|
|
special_func_defs = [
|
|
("strftime", ("%Y-%m-%d",), {}),
|
|
("tz_convert", ("EST",), {}),
|
|
("round", ("D",), {}),
|
|
("floor", ("D",), {}),
|
|
("ceil", ("D",), {}),
|
|
("asfreq", ("D",), {}),
|
|
# FIXME: don't leave commented-out
|
|
# ('tz_localize', ("UTC",), {}),
|
|
]
|
|
_special_func_names = [f[0] for f in special_func_defs]
|
|
|
|
# the series is already localized
|
|
_ignore_names = ["tz_localize", "components"]
|
|
|
|
for name, attr_names, s, c in test_data:
|
|
func_names = [
|
|
f
|
|
for f in dir(s.dt)
|
|
if not (
|
|
f.startswith("_")
|
|
or f in attr_names
|
|
or f in _special_func_names
|
|
or f in _ignore_names
|
|
)
|
|
]
|
|
|
|
func_defs = [(f, (), {}) for f in func_names]
|
|
for f_def in special_func_defs:
|
|
if f_def[0] in dir(s.dt):
|
|
func_defs.append(f_def)
|
|
|
|
for func, args, kwargs in func_defs:
|
|
with warnings.catch_warnings():
|
|
if func == "to_period":
|
|
# dropping TZ
|
|
warnings.simplefilter("ignore", UserWarning)
|
|
res = getattr(c.dt, func)(*args, **kwargs)
|
|
exp = getattr(s.dt, func)(*args, **kwargs)
|
|
|
|
tm.assert_equal(res, exp)
|
|
|
|
for attr in attr_names:
|
|
res = getattr(c.dt, attr)
|
|
exp = getattr(s.dt, attr)
|
|
|
|
if isinstance(res, DataFrame):
|
|
tm.assert_frame_equal(res, exp)
|
|
elif isinstance(res, Series):
|
|
tm.assert_series_equal(res, exp)
|
|
else:
|
|
tm.assert_almost_equal(res, exp)
|
|
|
|
invalid = Series([1, 2, 3]).astype("category")
|
|
msg = "Can only use .dt accessor with datetimelike"
|
|
|
|
with pytest.raises(AttributeError, match=msg):
|
|
invalid.dt
|
|
assert not hasattr(invalid, "str")
|