LSR/env/lib/python3.6/site-packages/pandas/tests/series/test_missing.py
2020-06-04 17:24:47 +02:00

1651 lines
58 KiB
Python

from datetime import datetime, timedelta
import numpy as np
import pytest
import pytz
from pandas._libs.tslib import iNaT
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Categorical,
DataFrame,
Index,
IntervalIndex,
MultiIndex,
NaT,
Series,
Timedelta,
Timestamp,
date_range,
isna,
)
import pandas._testing as tm
def _simple_ts(start, end, freq="D"):
rng = date_range(start, end, freq=freq)
return Series(np.random.randn(len(rng)), index=rng)
class TestSeriesMissingData:
def test_timedelta_fillna(self):
# GH 3371
s = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130102"),
Timestamp("20130103 9:01:01"),
]
)
td = s.diff()
# reg fillna
result = td.fillna(Timedelta(seconds=0))
expected = Series(
[
timedelta(0),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
# interpreted as seconds, deprecated
with pytest.raises(TypeError, match="Passing integers to fillna"):
td.fillna(1)
result = td.fillna(Timedelta(seconds=1))
expected = Series(
[
timedelta(seconds=1),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
result = td.fillna(timedelta(days=1, seconds=1))
expected = Series(
[
timedelta(days=1, seconds=1),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
result = td.fillna(np.timedelta64(int(1e9)))
expected = Series(
[
timedelta(seconds=1),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
result = td.fillna(NaT)
expected = Series(
[
NaT,
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
],
dtype="m8[ns]",
)
tm.assert_series_equal(result, expected)
# ffill
td[2] = np.nan
result = td.ffill()
expected = td.fillna(Timedelta(seconds=0))
expected[0] = np.nan
tm.assert_series_equal(result, expected)
# bfill
td[2] = np.nan
result = td.bfill()
expected = td.fillna(Timedelta(seconds=0))
expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1)
tm.assert_series_equal(result, expected)
def test_datetime64_fillna(self):
s = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130102"),
Timestamp("20130103 9:01:01"),
]
)
s[2] = np.nan
# reg fillna
result = s.fillna(Timestamp("20130104"))
expected = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130104"),
Timestamp("20130103 9:01:01"),
]
)
tm.assert_series_equal(result, expected)
result = s.fillna(NaT)
expected = s
tm.assert_series_equal(result, expected)
# ffill
result = s.ffill()
expected = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130103 9:01:01"),
]
)
tm.assert_series_equal(result, expected)
# bfill
result = s.bfill()
expected = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130103 9:01:01"),
Timestamp("20130103 9:01:01"),
]
)
tm.assert_series_equal(result, expected)
# GH 6587
# make sure that we are treating as integer when filling
# this also tests inference of a datetime-like with NaT's
s = Series([pd.NaT, pd.NaT, "2013-08-05 15:30:00.000001"])
expected = Series(
[
"2013-08-05 15:30:00.000001",
"2013-08-05 15:30:00.000001",
"2013-08-05 15:30:00.000001",
],
dtype="M8[ns]",
)
result = s.fillna(method="backfill")
tm.assert_series_equal(result, expected)
def test_datetime64_tz_fillna(self):
for tz in ["US/Eastern", "Asia/Tokyo"]:
# DatetimeBlock
s = Series(
[
Timestamp("2011-01-01 10:00"),
pd.NaT,
Timestamp("2011-01-03 10:00"),
pd.NaT,
]
)
null_loc = pd.Series([False, True, False, True])
result = s.fillna(pd.Timestamp("2011-01-02 10:00"))
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00"),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-02 10:00"),
]
)
tm.assert_series_equal(expected, result)
# check s is not changed
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz))
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-02 10:00", tz=tz),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna("AAA")
expected = Series(
[
Timestamp("2011-01-01 10:00"),
"AAA",
Timestamp("2011-01-03 10:00"),
"AAA",
],
dtype=object,
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{
1: pd.Timestamp("2011-01-02 10:00", tz=tz),
3: pd.Timestamp("2011-01-04 10:00"),
}
)
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-04 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{
1: pd.Timestamp("2011-01-02 10:00"),
3: pd.Timestamp("2011-01-04 10:00"),
}
)
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00"),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-04 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# DatetimeBlockTZ
idx = pd.DatetimeIndex(
["2011-01-01 10:00", pd.NaT, "2011-01-03 10:00", pd.NaT], tz=tz
)
s = pd.Series(idx)
assert s.dtype == f"datetime64[ns, {tz}]"
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00"))
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2011-01-02 10:00"),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2011-01-02 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz))
idx = pd.DatetimeIndex(
[
"2011-01-01 10:00",
"2011-01-02 10:00",
"2011-01-03 10:00",
"2011-01-02 10:00",
],
tz=tz,
)
expected = Series(idx)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime())
idx = pd.DatetimeIndex(
[
"2011-01-01 10:00",
"2011-01-02 10:00",
"2011-01-03 10:00",
"2011-01-02 10:00",
],
tz=tz,
)
expected = Series(idx)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna("AAA")
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
"AAA",
Timestamp("2011-01-03 10:00", tz=tz),
"AAA",
],
dtype=object,
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{
1: pd.Timestamp("2011-01-02 10:00", tz=tz),
3: pd.Timestamp("2011-01-04 10:00"),
}
)
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2011-01-04 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{
1: pd.Timestamp("2011-01-02 10:00", tz=tz),
3: pd.Timestamp("2011-01-04 10:00", tz=tz),
}
)
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2011-01-04 10:00", tz=tz),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# filling with a naive/other zone, coerce to object
result = s.fillna(Timestamp("20130101"))
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2013-01-01"),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2013-01-01"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(Timestamp("20130101", tz="US/Pacific"))
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2013-01-01", tz="US/Pacific"),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2013-01-01", tz="US/Pacific"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# with timezone
# GH 15855
df = pd.Series([pd.Timestamp("2012-11-11 00:00:00+01:00"), pd.NaT])
exp = pd.Series(
[
pd.Timestamp("2012-11-11 00:00:00+01:00"),
pd.Timestamp("2012-11-11 00:00:00+01:00"),
]
)
tm.assert_series_equal(df.fillna(method="pad"), exp)
df = pd.Series([pd.NaT, pd.Timestamp("2012-11-11 00:00:00+01:00")])
exp = pd.Series(
[
pd.Timestamp("2012-11-11 00:00:00+01:00"),
pd.Timestamp("2012-11-11 00:00:00+01:00"),
]
)
tm.assert_series_equal(df.fillna(method="bfill"), exp)
def test_datetime64_non_nano_fillna(self):
# GH#27419
ser = Series([Timestamp("2010-01-01"), pd.NaT, Timestamp("2000-01-01")])
val = np.datetime64("1975-04-05", "ms")
result = ser.fillna(val)
expected = Series(
[Timestamp("2010-01-01"), Timestamp("1975-04-05"), Timestamp("2000-01-01")]
)
tm.assert_series_equal(result, expected)
def test_fillna_consistency(self):
# GH 16402
# fillna with a tz aware to a tz-naive, should result in object
s = Series([Timestamp("20130101"), pd.NaT])
result = s.fillna(Timestamp("20130101", tz="US/Eastern"))
expected = Series(
[Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")],
dtype="object",
)
tm.assert_series_equal(result, expected)
# where (we ignore the errors=)
result = s.where(
[True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore"
)
tm.assert_series_equal(result, expected)
result = s.where(
[True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore"
)
tm.assert_series_equal(result, expected)
# with a non-datetime
result = s.fillna("foo")
expected = Series([Timestamp("20130101"), "foo"])
tm.assert_series_equal(result, expected)
# assignment
s2 = s.copy()
s2[1] = "foo"
tm.assert_series_equal(s2, expected)
def test_where_sparse(self):
# GH#17198 make sure we dont get an AttributeError for sp_index
ser = pd.Series(pd.arrays.SparseArray([1, 2]))
result = ser.where(ser >= 2, 0)
expected = pd.Series(pd.arrays.SparseArray([0, 2]))
tm.assert_series_equal(result, expected)
def test_datetime64tz_fillna_round_issue(self):
# GH 14872
data = pd.Series(
[pd.NaT, pd.NaT, datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc)]
)
filled = data.fillna(method="bfill")
expected = pd.Series(
[
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
]
)
tm.assert_series_equal(filled, expected)
def test_fillna_downcast(self):
# GH 15277
# infer int64 from float64
s = pd.Series([1.0, np.nan])
result = s.fillna(0, downcast="infer")
expected = pd.Series([1, 0])
tm.assert_series_equal(result, expected)
# infer int64 from float64 when fillna value is a dict
s = pd.Series([1.0, np.nan])
result = s.fillna({1: 0}, downcast="infer")
expected = pd.Series([1, 0])
tm.assert_series_equal(result, expected)
def test_fillna_int(self):
s = Series(np.random.randint(-100, 100, 50))
s.fillna(method="ffill", inplace=True)
tm.assert_series_equal(s.fillna(method="ffill", inplace=False), s)
def test_fillna_raise(self):
s = Series(np.random.randint(-100, 100, 50))
msg = '"value" parameter must be a scalar or dict, but you passed a "list"'
with pytest.raises(TypeError, match=msg):
s.fillna([1, 2])
msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"'
with pytest.raises(TypeError, match=msg):
s.fillna((1, 2))
# related GH 9217, make sure limit is an int and greater than 0
s = Series([1, 2, 3, None])
msg = (
r"Cannot specify both 'value' and 'method'\.|"
r"Limit must be greater than 0|"
"Limit must be an integer"
)
for limit in [-1, 0, 1.0, 2.0]:
for method in ["backfill", "bfill", "pad", "ffill", None]:
with pytest.raises(ValueError, match=msg):
s.fillna(1, limit=limit, method=method)
def test_categorical_nan_equality(self):
cat = Series(Categorical(["a", "b", "c", np.nan]))
exp = Series([True, True, True, False])
res = cat == cat
tm.assert_series_equal(res, exp)
def test_categorical_nan_handling(self):
# NaNs are represented as -1 in labels
s = Series(Categorical(["a", "b", np.nan, "a"]))
tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
tm.assert_numpy_array_equal(
s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8)
)
@pytest.mark.parametrize(
"fill_value, expected_output",
[
("a", ["a", "a", "b", "a", "a"]),
({1: "a", 3: "b", 4: "b"}, ["a", "a", "b", "b", "b"]),
({1: "a"}, ["a", "a", "b", np.nan, np.nan]),
({1: "a", 3: "b"}, ["a", "a", "b", "b", np.nan]),
(Series("a"), ["a", np.nan, "b", np.nan, np.nan]),
(Series("a", index=[1]), ["a", "a", "b", np.nan, np.nan]),
(Series({1: "a", 3: "b"}), ["a", "a", "b", "b", np.nan]),
(Series(["a", "b"], index=[3, 4]), ["a", np.nan, "b", "a", "b"]),
],
)
def test_fillna_categorical(self, fill_value, expected_output):
# GH 17033
# Test fillna for a Categorical series
data = ["a", np.nan, "b", np.nan, np.nan]
s = Series(Categorical(data, categories=["a", "b"]))
exp = Series(Categorical(expected_output, categories=["a", "b"]))
tm.assert_series_equal(s.fillna(fill_value), exp)
@pytest.mark.parametrize(
"fill_value, expected_output",
[
(Series(["a", "b", "c", "d", "e"]), ["a", "b", "b", "d", "e"]),
(Series(["b", "d", "a", "d", "a"]), ["a", "d", "b", "d", "a"]),
(
Series(
Categorical(
["b", "d", "a", "d", "a"], categories=["b", "c", "d", "e", "a"]
)
),
["a", "d", "b", "d", "a"],
),
],
)
def test_fillna_categorical_with_new_categories(self, fill_value, expected_output):
# GH 26215
data = ["a", np.nan, "b", np.nan, np.nan]
s = Series(Categorical(data, categories=["a", "b", "c", "d", "e"]))
exp = Series(Categorical(expected_output, categories=["a", "b", "c", "d", "e"]))
tm.assert_series_equal(s.fillna(fill_value), exp)
def test_fillna_categorical_raise(self):
data = ["a", np.nan, "b", np.nan, np.nan]
s = Series(Categorical(data, categories=["a", "b"]))
with pytest.raises(ValueError, match="fill value must be in categories"):
s.fillna("d")
with pytest.raises(ValueError, match="fill value must be in categories"):
s.fillna(Series("d"))
with pytest.raises(ValueError, match="fill value must be in categories"):
s.fillna({1: "d", 3: "a"})
msg = '"value" parameter must be a scalar or dict, but you passed a "list"'
with pytest.raises(TypeError, match=msg):
s.fillna(["a", "b"])
msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"'
with pytest.raises(TypeError, match=msg):
s.fillna(("a", "b"))
msg = (
'"value" parameter must be a scalar, dict '
'or Series, but you passed a "DataFrame"'
)
with pytest.raises(TypeError, match=msg):
s.fillna(DataFrame({1: ["a"], 3: ["b"]}))
def test_fillna_nat(self):
series = Series([0, 1, 2, iNaT], dtype="M8[ns]")
filled = series.fillna(method="pad")
filled2 = series.fillna(value=series.values[2])
expected = series.copy()
expected.values[3] = expected.values[2]
tm.assert_series_equal(filled, expected)
tm.assert_series_equal(filled2, expected)
df = DataFrame({"A": series})
filled = df.fillna(method="pad")
filled2 = df.fillna(value=series.values[2])
expected = DataFrame({"A": expected})
tm.assert_frame_equal(filled, expected)
tm.assert_frame_equal(filled2, expected)
series = Series([iNaT, 0, 1, 2], dtype="M8[ns]")
filled = series.fillna(method="bfill")
filled2 = series.fillna(value=series[1])
expected = series.copy()
expected[0] = expected[1]
tm.assert_series_equal(filled, expected)
tm.assert_series_equal(filled2, expected)
df = DataFrame({"A": series})
filled = df.fillna(method="bfill")
filled2 = df.fillna(value=series[1])
expected = DataFrame({"A": expected})
tm.assert_frame_equal(filled, expected)
tm.assert_frame_equal(filled2, expected)
def test_isna_for_inf(self):
s = Series(["a", np.inf, np.nan, 1.0])
with pd.option_context("mode.use_inf_as_na", True):
r = s.isna()
dr = s.dropna()
e = Series([False, True, True, False])
de = Series(["a", 1.0], index=[0, 3])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
def test_isnull_for_inf_deprecated(self):
# gh-17115
s = Series(["a", np.inf, np.nan, 1.0])
with pd.option_context("mode.use_inf_as_null", True):
r = s.isna()
dr = s.dropna()
e = Series([False, True, True, False])
de = Series(["a", 1.0], index=[0, 3])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
def test_fillna(self, datetime_series):
ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
tm.assert_series_equal(ts, ts.fillna(method="ffill"))
ts[2] = np.NaN
exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index)
tm.assert_series_equal(ts.fillna(method="ffill"), exp)
exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index)
tm.assert_series_equal(ts.fillna(method="backfill"), exp)
exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index)
tm.assert_series_equal(ts.fillna(value=5), exp)
msg = "Must specify a fill 'value' or 'method'"
with pytest.raises(ValueError, match=msg):
ts.fillna()
msg = "Cannot specify both 'value' and 'method'"
with pytest.raises(ValueError, match=msg):
datetime_series.fillna(value=0, method="ffill")
# GH 5703
s1 = Series([np.nan])
s2 = Series([1])
result = s1.fillna(s2)
expected = Series([1.0])
tm.assert_series_equal(result, expected)
result = s1.fillna({})
tm.assert_series_equal(result, s1)
result = s1.fillna(Series((), dtype=object))
tm.assert_series_equal(result, s1)
result = s2.fillna(s1)
tm.assert_series_equal(result, s2)
result = s1.fillna({0: 1})
tm.assert_series_equal(result, expected)
result = s1.fillna({1: 1})
tm.assert_series_equal(result, Series([np.nan]))
result = s1.fillna({0: 1, 1: 1})
tm.assert_series_equal(result, expected)
result = s1.fillna(Series({0: 1, 1: 1}))
tm.assert_series_equal(result, expected)
result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5]))
tm.assert_series_equal(result, s1)
s1 = Series([0, 1, 2], list("abc"))
s2 = Series([0, np.nan, 2], list("bac"))
result = s2.fillna(s1)
expected = Series([0, 0, 2.0], list("bac"))
tm.assert_series_equal(result, expected)
# limit
s = Series(np.nan, index=[0, 1, 2])
result = s.fillna(999, limit=1)
expected = Series([999, np.nan, np.nan], index=[0, 1, 2])
tm.assert_series_equal(result, expected)
result = s.fillna(999, limit=2)
expected = Series([999, 999, np.nan], index=[0, 1, 2])
tm.assert_series_equal(result, expected)
# GH 9043
# make sure a string representation of int/float values can be filled
# correctly without raising errors or being converted
vals = ["0", "1.5", "-0.3"]
for val in vals:
s = Series([0, 1, np.nan, np.nan, 4], dtype="float64")
result = s.fillna(val)
expected = Series([0, 1, val, val, 4], dtype="object")
tm.assert_series_equal(result, expected)
def test_fillna_bug(self):
x = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"])
filled = x.fillna(method="ffill")
expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], x.index)
tm.assert_series_equal(filled, expected)
filled = x.fillna(method="bfill")
expected = Series([1.0, 1.0, 3.0, 3.0, np.nan], x.index)
tm.assert_series_equal(filled, expected)
def test_fillna_inplace(self):
x = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"])
y = x.copy()
y.fillna(value=0, inplace=True)
expected = x.fillna(value=0)
tm.assert_series_equal(y, expected)
def test_fillna_invalid_method(self, datetime_series):
try:
datetime_series.fillna(method="ffil")
except ValueError as inst:
assert "ffil" in str(inst)
def test_ffill(self):
ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
ts[2] = np.NaN
tm.assert_series_equal(ts.ffill(), ts.fillna(method="ffill"))
def test_ffill_mixed_dtypes_without_missing_data(self):
# GH14956
series = pd.Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1])
result = series.ffill()
tm.assert_series_equal(series, result)
def test_bfill(self):
ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
ts[2] = np.NaN
tm.assert_series_equal(ts.bfill(), ts.fillna(method="bfill"))
def test_timedelta64_nan(self):
td = Series([timedelta(days=i) for i in range(10)])
# nan ops on timedeltas
td1 = td.copy()
td1[0] = np.nan
assert isna(td1[0])
assert td1[0].value == iNaT
td1[0] = td[0]
assert not isna(td1[0])
# GH#16674 iNaT is treated as an integer when given by the user
td1[1] = iNaT
assert not isna(td1[1])
assert td1.dtype == np.object_
assert td1[1] == iNaT
td1[1] = td[1]
assert not isna(td1[1])
td1[2] = NaT
assert isna(td1[2])
assert td1[2].value == iNaT
td1[2] = td[2]
assert not isna(td1[2])
# FIXME: don't leave commented-out
# boolean setting
# this doesn't work, not sure numpy even supports it
# result = td[(td>np.timedelta64(timedelta(days=3))) &
# td<np.timedelta64(timedelta(days=7)))] = np.nan
# assert isna(result).sum() == 7
# NumPy limitation =(
# def test_logical_range_select(self):
# np.random.seed(12345)
# selector = -0.5 <= datetime_series <= 0.5
# expected = (datetime_series >= -0.5) & (datetime_series <= 0.5)
# tm.assert_series_equal(selector, expected)
def test_dropna_empty(self):
s = Series([], dtype=object)
assert len(s.dropna()) == 0
s.dropna(inplace=True)
assert len(s) == 0
# invalid axis
msg = "No axis named 1 for object type <class 'pandas.core.series.Series'>"
with pytest.raises(ValueError, match=msg):
s.dropna(axis=1)
def test_datetime64_tz_dropna(self):
# DatetimeBlock
s = Series(
[
Timestamp("2011-01-01 10:00"),
pd.NaT,
Timestamp("2011-01-03 10:00"),
pd.NaT,
]
)
result = s.dropna()
expected = Series(
[Timestamp("2011-01-01 10:00"), Timestamp("2011-01-03 10:00")], index=[0, 2]
)
tm.assert_series_equal(result, expected)
# DatetimeBlockTZ
idx = pd.DatetimeIndex(
["2011-01-01 10:00", pd.NaT, "2011-01-03 10:00", pd.NaT], tz="Asia/Tokyo"
)
s = pd.Series(idx)
assert s.dtype == "datetime64[ns, Asia/Tokyo]"
result = s.dropna()
expected = Series(
[
Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"),
Timestamp("2011-01-03 10:00", tz="Asia/Tokyo"),
],
index=[0, 2],
)
assert result.dtype == "datetime64[ns, Asia/Tokyo]"
tm.assert_series_equal(result, expected)
def test_dropna_no_nan(self):
for s in [Series([1, 2, 3], name="x"), Series([False, True, False], name="x")]:
result = s.dropna()
tm.assert_series_equal(result, s)
assert result is not s
s2 = s.copy()
s2.dropna(inplace=True)
tm.assert_series_equal(s2, s)
def test_dropna_intervals(self):
s = Series(
[np.nan, 1, 2, 3],
IntervalIndex.from_arrays([np.nan, 0, 1, 2], [np.nan, 1, 2, 3]),
)
result = s.dropna()
expected = s.iloc[1:]
tm.assert_series_equal(result, expected)
def test_valid(self, datetime_series):
ts = datetime_series.copy()
ts[::2] = np.NaN
result = ts.dropna()
assert len(result) == ts.count()
tm.assert_series_equal(result, ts[1::2])
tm.assert_series_equal(result, ts[pd.notna(ts)])
def test_isna(self):
ser = Series([0, 5.4, 3, np.nan, -0.001])
expected = Series([False, False, False, True, False])
tm.assert_series_equal(ser.isna(), expected)
ser = Series(["hi", "", np.nan])
expected = Series([False, False, True])
tm.assert_series_equal(ser.isna(), expected)
def test_notna(self):
ser = Series([0, 5.4, 3, np.nan, -0.001])
expected = Series([True, True, True, False, True])
tm.assert_series_equal(ser.notna(), expected)
ser = Series(["hi", "", np.nan])
expected = Series([True, True, False])
tm.assert_series_equal(ser.notna(), expected)
def test_pad_nan(self):
x = Series(
[np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"], dtype=float
)
x.fillna(method="pad", inplace=True)
expected = Series(
[np.nan, 1.0, 1.0, 3.0, 3.0], ["z", "a", "b", "c", "d"], dtype=float
)
tm.assert_series_equal(x[1:], expected[1:])
assert np.isnan(x[0]), np.isnan(expected[0])
def test_pad_require_monotonicity(self):
rng = date_range("1/1/2000", "3/1/2000", freq="B")
# neither monotonic increasing or decreasing
rng2 = rng[[1, 0, 2]]
msg = "index must be monotonic increasing or decreasing"
with pytest.raises(ValueError, match=msg):
rng2.get_indexer(rng, method="pad")
def test_dropna_preserve_name(self, datetime_series):
datetime_series[:5] = np.nan
result = datetime_series.dropna()
assert result.name == datetime_series.name
name = datetime_series.name
ts = datetime_series.copy()
ts.dropna(inplace=True)
assert ts.name == name
def test_fill_value_when_combine_const(self):
# GH12723
s = Series([0, 1, np.nan, 3, 4, 5])
exp = s.fillna(0).add(2)
res = s.add(2, fill_value=0)
tm.assert_series_equal(res, exp)
def test_series_fillna_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
result = s[:2].reindex(index)
result = result.fillna(method="pad", limit=5)
expected = s[:2].reindex(index).fillna(method="pad")
expected[-3:] = np.nan
tm.assert_series_equal(result, expected)
result = s[-2:].reindex(index)
result = result.fillna(method="bfill", limit=5)
expected = s[-2:].reindex(index).fillna(method="backfill")
expected[:3] = np.nan
tm.assert_series_equal(result, expected)
def test_series_pad_backfill_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
result = s[:2].reindex(index, method="pad", limit=5)
expected = s[:2].reindex(index).fillna(method="pad")
expected[-3:] = np.nan
tm.assert_series_equal(result, expected)
result = s[-2:].reindex(index, method="backfill", limit=5)
expected = s[-2:].reindex(index).fillna(method="backfill")
expected[:3] = np.nan
tm.assert_series_equal(result, expected)
@pytest.fixture(
params=[
"linear",
"index",
"values",
"nearest",
"slinear",
"zero",
"quadratic",
"cubic",
"barycentric",
"krogh",
"polynomial",
"spline",
"piecewise_polynomial",
"from_derivatives",
"pchip",
"akima",
]
)
def nontemporal_method(request):
""" Fixture that returns an (method name, required kwargs) pair.
This fixture does not include method 'time' as a parameterization; that
method requires a Series with a DatetimeIndex, and is generally tested
separately from these non-temporal methods.
"""
method = request.param
kwargs = dict(order=1) if method in ("spline", "polynomial") else dict()
return method, kwargs
@pytest.fixture(
params=[
"linear",
"slinear",
"zero",
"quadratic",
"cubic",
"barycentric",
"krogh",
"polynomial",
"spline",
"piecewise_polynomial",
"from_derivatives",
"pchip",
"akima",
]
)
def interp_methods_ind(request):
""" Fixture that returns a (method name, required kwargs) pair to
be tested for various Index types.
This fixture does not include methods - 'time', 'index', 'nearest',
'values' as a parameterization
"""
method = request.param
kwargs = dict(order=1) if method in ("spline", "polynomial") else dict()
return method, kwargs
class TestSeriesInterpolateData:
def test_interpolate(self, datetime_series, string_series):
ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index)
ts_copy = ts.copy()
ts_copy[5:10] = np.NaN
linear_interp = ts_copy.interpolate(method="linear")
tm.assert_series_equal(linear_interp, ts)
ord_ts = Series(
[d.toordinal() for d in datetime_series.index], index=datetime_series.index
).astype(float)
ord_ts_copy = ord_ts.copy()
ord_ts_copy[5:10] = np.NaN
time_interp = ord_ts_copy.interpolate(method="time")
tm.assert_series_equal(time_interp, ord_ts)
def test_interpolate_time_raises_for_non_timeseries(self):
# When method='time' is used on a non-TimeSeries that contains a null
# value, a ValueError should be raised.
non_ts = Series([0, 1, 2, np.NaN])
msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex"
with pytest.raises(ValueError, match=msg):
non_ts.interpolate(method="time")
@td.skip_if_no_scipy
def test_interpolate_pchip(self):
ser = Series(np.sort(np.random.uniform(size=100)))
# interpolate at new_index
new_index = ser.index.union(
Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
).astype(float)
interp_s = ser.reindex(new_index).interpolate(method="pchip")
# does not blow up, GH5977
interp_s[49:51]
@td.skip_if_no_scipy
def test_interpolate_akima(self):
ser = Series([10, 11, 12, 13])
expected = Series(
[11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
)
# interpolate at new_index
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
float
)
interp_s = ser.reindex(new_index).interpolate(method="akima")
tm.assert_series_equal(interp_s[1:3], expected)
@td.skip_if_no_scipy
def test_interpolate_piecewise_polynomial(self):
ser = Series([10, 11, 12, 13])
expected = Series(
[11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
)
# interpolate at new_index
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
float
)
interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial")
tm.assert_series_equal(interp_s[1:3], expected)
@td.skip_if_no_scipy
def test_interpolate_from_derivatives(self):
ser = Series([10, 11, 12, 13])
expected = Series(
[11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
)
# interpolate at new_index
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
float
)
interp_s = ser.reindex(new_index).interpolate(method="from_derivatives")
tm.assert_series_equal(interp_s[1:3], expected)
@pytest.mark.parametrize(
"kwargs",
[
{},
pytest.param(
{"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy
),
],
)
def test_interpolate_corners(self, kwargs):
s = Series([np.nan, np.nan])
tm.assert_series_equal(s.interpolate(**kwargs), s)
s = Series([], dtype=object).interpolate()
tm.assert_series_equal(s.interpolate(**kwargs), s)
def test_interpolate_index_values(self):
s = Series(np.nan, index=np.sort(np.random.rand(30)))
s[::3] = np.random.randn(10)
vals = s.index.values.astype(float)
result = s.interpolate(method="index")
expected = s.copy()
bad = isna(expected.values)
good = ~bad
expected = Series(
np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]
)
tm.assert_series_equal(result[bad], expected)
# 'values' is synonymous with 'index' for the method kwarg
other_result = s.interpolate(method="values")
tm.assert_series_equal(other_result, result)
tm.assert_series_equal(other_result[bad], expected)
def test_interpolate_non_ts(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
msg = (
"time-weighted interpolation only works on Series or DataFrames "
"with a DatetimeIndex"
)
with pytest.raises(ValueError, match=msg):
s.interpolate(method="time")
@pytest.mark.parametrize(
"kwargs",
[
{},
pytest.param(
{"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy
),
],
)
def test_nan_interpolate(self, kwargs):
s = Series([0, 1, np.nan, 3])
result = s.interpolate(**kwargs)
expected = Series([0.0, 1.0, 2.0, 3.0])
tm.assert_series_equal(result, expected)
def test_nan_irregular_index(self):
s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9])
result = s.interpolate()
expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9])
tm.assert_series_equal(result, expected)
def test_nan_str_index(self):
s = Series([0, 1, 2, np.nan], index=list("abcd"))
result = s.interpolate()
expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd"))
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_interp_quad(self):
sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4])
result = sq.interpolate(method="quadratic")
expected = Series([1.0, 4.0, 9.0, 16.0], index=[1, 2, 3, 4])
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_interp_scipy_basic(self):
s = Series([1, 3, np.nan, 12, np.nan, 25])
# slinear
expected = Series([1.0, 3.0, 7.5, 12.0, 18.5, 25.0])
result = s.interpolate(method="slinear")
tm.assert_series_equal(result, expected)
result = s.interpolate(method="slinear", downcast="infer")
tm.assert_series_equal(result, expected)
# nearest
expected = Series([1, 3, 3, 12, 12, 25])
result = s.interpolate(method="nearest")
tm.assert_series_equal(result, expected.astype("float"))
result = s.interpolate(method="nearest", downcast="infer")
tm.assert_series_equal(result, expected)
# zero
expected = Series([1, 3, 3, 12, 12, 25])
result = s.interpolate(method="zero")
tm.assert_series_equal(result, expected.astype("float"))
result = s.interpolate(method="zero", downcast="infer")
tm.assert_series_equal(result, expected)
# quadratic
# GH #15662.
expected = Series([1, 3.0, 6.823529, 12.0, 18.058824, 25.0])
result = s.interpolate(method="quadratic")
tm.assert_series_equal(result, expected)
result = s.interpolate(method="quadratic", downcast="infer")
tm.assert_series_equal(result, expected)
# cubic
expected = Series([1.0, 3.0, 6.8, 12.0, 18.2, 25.0])
result = s.interpolate(method="cubic")
tm.assert_series_equal(result, expected)
def test_interp_limit(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0])
result = s.interpolate(method="linear", limit=2)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("limit", [-1, 0])
def test_interpolate_invalid_nonpositive_limit(self, nontemporal_method, limit):
# GH 9217: make sure limit is greater than zero.
s = pd.Series([1, 2, np.nan, 4])
method, kwargs = nontemporal_method
with pytest.raises(ValueError, match="Limit must be greater than 0"):
s.interpolate(limit=limit, method=method, **kwargs)
def test_interpolate_invalid_float_limit(self, nontemporal_method):
# GH 9217: make sure limit is an integer.
s = pd.Series([1, 2, np.nan, 4])
method, kwargs = nontemporal_method
limit = 2.0
with pytest.raises(ValueError, match="Limit must be an integer"):
s.interpolate(limit=limit, method=method, **kwargs)
@pytest.mark.parametrize("invalid_method", [None, "nonexistent_method"])
def test_interp_invalid_method(self, invalid_method):
s = Series([1, 3, np.nan, 12, np.nan, 25])
msg = f"method must be one of.* Got '{invalid_method}' instead"
with pytest.raises(ValueError, match=msg):
s.interpolate(method=invalid_method)
# When an invalid method and invalid limit (such as -1) are
# provided, the error message reflects the invalid method.
with pytest.raises(ValueError, match=msg):
s.interpolate(method=invalid_method, limit=-1)
def test_interp_limit_forward(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
# Provide 'forward' (the default) explicitly here.
expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0])
result = s.interpolate(method="linear", limit=2, limit_direction="forward")
tm.assert_series_equal(result, expected)
result = s.interpolate(method="linear", limit=2, limit_direction="FORWARD")
tm.assert_series_equal(result, expected)
def test_interp_unlimited(self):
# these test are for issue #16282 default Limit=None is unlimited
s = Series([np.nan, 1.0, 3.0, np.nan, np.nan, np.nan, 11.0, np.nan])
expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0])
result = s.interpolate(method="linear", limit_direction="both")
tm.assert_series_equal(result, expected)
expected = Series([np.nan, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0])
result = s.interpolate(method="linear", limit_direction="forward")
tm.assert_series_equal(result, expected)
expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, np.nan])
result = s.interpolate(method="linear", limit_direction="backward")
tm.assert_series_equal(result, expected)
def test_interp_limit_bad_direction(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
msg = (
r"Invalid limit_direction: expecting one of \['forward',"
r" 'backward', 'both'\], got 'abc'"
)
with pytest.raises(ValueError, match=msg):
s.interpolate(method="linear", limit=2, limit_direction="abc")
# raises an error even if no limit is specified.
with pytest.raises(ValueError, match=msg):
s.interpolate(method="linear", limit_direction="abc")
# limit_area introduced GH #16284
def test_interp_limit_area(self):
# These tests are for issue #9218 -- fill NaNs in both directions.
s = Series([np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan])
expected = Series([np.nan, np.nan, 3.0, 4.0, 5.0, 6.0, 7.0, np.nan, np.nan])
result = s.interpolate(method="linear", limit_area="inside")
tm.assert_series_equal(result, expected)
expected = Series(
[np.nan, np.nan, 3.0, 4.0, np.nan, np.nan, 7.0, np.nan, np.nan]
)
result = s.interpolate(method="linear", limit_area="inside", limit=1)
expected = Series([np.nan, np.nan, 3.0, 4.0, np.nan, 6.0, 7.0, np.nan, np.nan])
result = s.interpolate(
method="linear", limit_area="inside", limit_direction="both", limit=1
)
tm.assert_series_equal(result, expected)
expected = Series([np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0])
result = s.interpolate(method="linear", limit_area="outside")
tm.assert_series_equal(result, expected)
expected = Series(
[np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan]
)
result = s.interpolate(method="linear", limit_area="outside", limit=1)
expected = Series([np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan])
result = s.interpolate(
method="linear", limit_area="outside", limit_direction="both", limit=1
)
tm.assert_series_equal(result, expected)
expected = Series([3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan])
result = s.interpolate(
method="linear", limit_area="outside", direction="backward"
)
# raises an error even if limit type is wrong.
msg = r"Invalid limit_area: expecting one of \['inside', 'outside'\], got abc"
with pytest.raises(ValueError, match=msg):
s.interpolate(method="linear", limit_area="abc")
def test_interp_limit_direction(self):
# These tests are for issue #9218 -- fill NaNs in both directions.
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
expected = Series([1.0, 3.0, np.nan, 7.0, 9.0, 11.0])
result = s.interpolate(method="linear", limit=2, limit_direction="backward")
tm.assert_series_equal(result, expected)
expected = Series([1.0, 3.0, 5.0, np.nan, 9.0, 11.0])
result = s.interpolate(method="linear", limit=1, limit_direction="both")
tm.assert_series_equal(result, expected)
# Check that this works on a longer series of nans.
s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12, np.nan])
expected = Series([1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0])
result = s.interpolate(method="linear", limit=2, limit_direction="both")
tm.assert_series_equal(result, expected)
expected = Series(
[1.0, 3.0, 4.0, np.nan, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0]
)
result = s.interpolate(method="linear", limit=1, limit_direction="both")
tm.assert_series_equal(result, expected)
def test_interp_limit_to_ends(self):
# These test are for issue #10420 -- flow back to beginning.
s = Series([np.nan, np.nan, 5, 7, 9, np.nan])
expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, np.nan])
result = s.interpolate(method="linear", limit=2, limit_direction="backward")
tm.assert_series_equal(result, expected)
expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, 9.0])
result = s.interpolate(method="linear", limit=2, limit_direction="both")
tm.assert_series_equal(result, expected)
def test_interp_limit_before_ends(self):
# These test are for issue #11115 -- limit ends properly.
s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan])
expected = Series([np.nan, np.nan, 5.0, 7.0, 7.0, np.nan])
result = s.interpolate(method="linear", limit=1, limit_direction="forward")
tm.assert_series_equal(result, expected)
expected = Series([np.nan, 5.0, 5.0, 7.0, np.nan, np.nan])
result = s.interpolate(method="linear", limit=1, limit_direction="backward")
tm.assert_series_equal(result, expected)
expected = Series([np.nan, 5.0, 5.0, 7.0, 7.0, np.nan])
result = s.interpolate(method="linear", limit=1, limit_direction="both")
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_interp_all_good(self):
s = Series([1, 2, 3])
result = s.interpolate(method="polynomial", order=1)
tm.assert_series_equal(result, s)
# non-scipy
result = s.interpolate()
tm.assert_series_equal(result, s)
@pytest.mark.parametrize(
"check_scipy", [False, pytest.param(True, marks=td.skip_if_no_scipy)]
)
def test_interp_multiIndex(self, check_scipy):
idx = MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c")])
s = Series([1, 2, np.nan], index=idx)
expected = s.copy()
expected.loc[2] = 2
result = s.interpolate()
tm.assert_series_equal(result, expected)
msg = "Only `method=linear` interpolation is supported on MultiIndexes"
if check_scipy:
with pytest.raises(ValueError, match=msg):
s.interpolate(method="polynomial", order=1)
@td.skip_if_no_scipy
def test_interp_nonmono_raise(self):
s = Series([1, np.nan, 3], index=[0, 2, 1])
msg = "krogh interpolation requires that the index be monotonic"
with pytest.raises(ValueError, match=msg):
s.interpolate(method="krogh")
@td.skip_if_no_scipy
@pytest.mark.parametrize("method", ["nearest", "pad"])
def test_interp_datetime64(self, method, tz_naive_fixture):
df = Series(
[1, np.nan, 3], index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture)
)
result = df.interpolate(method=method)
expected = Series(
[1.0, 1.0, 3.0],
index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture),
)
tm.assert_series_equal(result, expected)
def test_interp_pad_datetime64tz_values(self):
# GH#27628 missing.interpolate_2d should handle datetimetz values
dti = pd.date_range("2015-04-05", periods=3, tz="US/Central")
ser = pd.Series(dti)
ser[1] = pd.NaT
result = ser.interpolate(method="pad")
expected = pd.Series(dti)
expected[1] = expected[0]
tm.assert_series_equal(result, expected)
def test_interp_limit_no_nans(self):
# GH 7173
s = pd.Series([1.0, 2.0, 3.0])
result = s.interpolate(limit=1)
expected = s
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
@pytest.mark.parametrize("method", ["polynomial", "spline"])
def test_no_order(self, method):
# see GH-10633, GH-24014
s = Series([0, 1, np.nan, 3])
msg = "You must specify the order of the spline or polynomial"
with pytest.raises(ValueError, match=msg):
s.interpolate(method=method)
@td.skip_if_no_scipy
@pytest.mark.parametrize("order", [-1, -1.0, 0, 0.0, np.nan])
def test_interpolate_spline_invalid_order(self, order):
s = Series([0, 1, np.nan, 3])
msg = "order needs to be specified and greater than 0"
with pytest.raises(ValueError, match=msg):
s.interpolate(method="spline", order=order)
@td.skip_if_no_scipy
def test_spline(self):
s = Series([1, 2, np.nan, 4, 5, np.nan, 7])
result = s.interpolate(method="spline", order=1)
expected = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_spline_extrapolate(self):
s = Series([1, 2, 3, 4, np.nan, 6, np.nan])
result3 = s.interpolate(method="spline", order=1, ext=3)
expected3 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 6.0])
tm.assert_series_equal(result3, expected3)
result1 = s.interpolate(method="spline", order=1, ext=0)
expected1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
tm.assert_series_equal(result1, expected1)
@td.skip_if_no_scipy
def test_spline_smooth(self):
s = Series([1, 2, np.nan, 4, 5.1, np.nan, 7])
assert (
s.interpolate(method="spline", order=3, s=0)[5]
!= s.interpolate(method="spline", order=3)[5]
)
@td.skip_if_no_scipy
def test_spline_interpolation(self):
s = Series(np.arange(10) ** 2)
s[np.random.randint(0, 9, 3)] = np.nan
result1 = s.interpolate(method="spline", order=1)
expected1 = s.interpolate(method="spline", order=1)
tm.assert_series_equal(result1, expected1)
def test_interp_timedelta64(self):
# GH 6424
df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 3]))
result = df.interpolate(method="time")
expected = Series([1.0, 2.0, 3.0], index=pd.to_timedelta([1, 2, 3]))
tm.assert_series_equal(result, expected)
# test for non uniform spacing
df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 4]))
result = df.interpolate(method="time")
expected = Series([1.0, 1.666667, 3.0], index=pd.to_timedelta([1, 2, 4]))
tm.assert_series_equal(result, expected)
def test_series_interpolate_method_values(self):
# #1646
ts = _simple_ts("1/1/2000", "1/20/2000")
ts[::2] = np.nan
result = ts.interpolate(method="values")
exp = ts.interpolate()
tm.assert_series_equal(result, exp)
def test_series_interpolate_intraday(self):
# #1698
index = pd.date_range("1/1/2012", periods=4, freq="12D")
ts = pd.Series([0, 12, 24, 36], index)
new_index = index.append(index + pd.DateOffset(days=1)).sort_values()
exp = ts.reindex(new_index).interpolate(method="time")
index = pd.date_range("1/1/2012", periods=4, freq="12H")
ts = pd.Series([0, 12, 24, 36], index)
new_index = index.append(index + pd.DateOffset(hours=1)).sort_values()
result = ts.reindex(new_index).interpolate(method="time")
tm.assert_numpy_array_equal(result.values, exp.values)
@pytest.mark.parametrize(
"ind",
[
["a", "b", "c", "d"],
pd.period_range(start="2019-01-01", periods=4),
pd.interval_range(start=0, end=4),
],
)
def test_interp_non_timedelta_index(self, interp_methods_ind, ind):
# gh 21662
df = pd.DataFrame([0, 1, np.nan, 3], index=ind)
method, kwargs = interp_methods_ind
if method == "pchip":
pytest.importorskip("scipy")
if method == "linear":
result = df[0].interpolate(**kwargs)
expected = pd.Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind)
tm.assert_series_equal(result, expected)
else:
expected_error = (
"Index column must be numeric or datetime type when "
f"using {method} method other than linear. "
"Try setting a numeric or datetime index column before "
"interpolating."
)
with pytest.raises(ValueError, match=expected_error):
df[0].interpolate(method=method, **kwargs)
def test_interpolate_timedelta_index(self, interp_methods_ind):
"""
Tests for non numerical index types - object, period, timedelta
Note that all methods except time, index, nearest and values
are tested here.
"""
# gh 21662
ind = pd.timedelta_range(start=1, periods=4)
df = pd.DataFrame([0, 1, np.nan, 3], index=ind)
method, kwargs = interp_methods_ind
if method == "pchip":
pytest.importorskip("scipy")
if method in {"linear", "pchip"}:
result = df[0].interpolate(method=method, **kwargs)
expected = pd.Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind)
tm.assert_series_equal(result, expected)
else:
pytest.skip(
"This interpolation method is not supported for Timedelta Index yet."
)
@pytest.mark.parametrize(
"ascending, expected_values",
[(True, [1, 2, 3, 9, 10]), (False, [10, 9, 3, 2, 1])],
)
def test_interpolate_unsorted_index(self, ascending, expected_values):
# GH 21037
ts = pd.Series(data=[10, 9, np.nan, 2, 1], index=[10, 9, 3, 2, 1])
result = ts.sort_index(ascending=ascending).interpolate(method="index")
expected = pd.Series(data=expected_values, index=expected_values, dtype=float)
tm.assert_series_equal(result, expected)