LSR/env/lib/python3.6/site-packages/pandas/tests/test_multilevel.py
2020-06-04 17:24:47 +02:00

2474 lines
85 KiB
Python

import datetime
from io import StringIO
import itertools
from itertools import product
import numpy as np
from numpy.random import randn
import pytest
import pytz
from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, isna
import pandas._testing as tm
AGG_FUNCTIONS = [
"sum",
"prod",
"min",
"max",
"median",
"mean",
"skew",
"mad",
"std",
"var",
"sem",
]
class Base:
def setup_method(self, method):
index = MultiIndex(
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
self.frame = DataFrame(
np.random.randn(10, 3),
index=index,
columns=Index(["A", "B", "C"], name="exp"),
)
self.single_level = MultiIndex(
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
)
# create test series object
arrays = [
["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
tuples = zip(*arrays)
index = MultiIndex.from_tuples(tuples)
s = Series(randn(8), index=index)
s[3] = np.NaN
self.series = s
self.tdf = tm.makeTimeDataFrame(100)
self.ymd = self.tdf.groupby(
[lambda x: x.year, lambda x: x.month, lambda x: x.day]
).sum()
# use Int64Index, to make sure things work
self.ymd.index.set_levels(
[lev.astype("i8") for lev in self.ymd.index.levels], inplace=True
)
self.ymd.index.set_names(["year", "month", "day"], inplace=True)
class TestMultiLevel(Base):
def test_append(self):
a, b = self.frame[:5], self.frame[5:]
result = a.append(b)
tm.assert_frame_equal(result, self.frame)
result = a["A"].append(b["A"])
tm.assert_series_equal(result, self.frame["A"])
def test_append_index(self):
idx1 = Index([1.1, 1.2, 1.3])
idx2 = pd.date_range("2011-01-01", freq="D", periods=3, tz="Asia/Tokyo")
idx3 = Index(["A", "B", "C"])
midx_lv2 = MultiIndex.from_arrays([idx1, idx2])
midx_lv3 = MultiIndex.from_arrays([idx1, idx2, idx3])
result = idx1.append(midx_lv2)
# see gh-7112
tz = pytz.timezone("Asia/Tokyo")
expected_tuples = [
(1.1, tz.localize(datetime.datetime(2011, 1, 1))),
(1.2, tz.localize(datetime.datetime(2011, 1, 2))),
(1.3, tz.localize(datetime.datetime(2011, 1, 3))),
]
expected = Index([1.1, 1.2, 1.3] + expected_tuples)
tm.assert_index_equal(result, expected)
result = midx_lv2.append(idx1)
expected = Index(expected_tuples + [1.1, 1.2, 1.3])
tm.assert_index_equal(result, expected)
result = midx_lv2.append(midx_lv2)
expected = MultiIndex.from_arrays([idx1.append(idx1), idx2.append(idx2)])
tm.assert_index_equal(result, expected)
result = midx_lv2.append(midx_lv3)
tm.assert_index_equal(result, expected)
result = midx_lv3.append(midx_lv2)
expected = Index._simple_new(
np.array(
[
(1.1, tz.localize(datetime.datetime(2011, 1, 1)), "A"),
(1.2, tz.localize(datetime.datetime(2011, 1, 2)), "B"),
(1.3, tz.localize(datetime.datetime(2011, 1, 3)), "C"),
]
+ expected_tuples,
dtype=object,
),
None,
)
tm.assert_index_equal(result, expected)
def test_dataframe_constructor(self):
multi = DataFrame(
np.random.randn(4, 4),
index=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])],
)
assert isinstance(multi.index, MultiIndex)
assert not isinstance(multi.columns, MultiIndex)
multi = DataFrame(
np.random.randn(4, 4), columns=[["a", "a", "b", "b"], ["x", "y", "x", "y"]]
)
assert isinstance(multi.columns, MultiIndex)
def test_series_constructor(self):
multi = Series(
1.0, index=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])]
)
assert isinstance(multi.index, MultiIndex)
multi = Series(1.0, index=[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
assert isinstance(multi.index, MultiIndex)
multi = Series(range(4), index=[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
assert isinstance(multi.index, MultiIndex)
def test_reindex_level(self):
# axis=0
month_sums = self.ymd.sum(level="month")
result = month_sums.reindex(self.ymd.index, level=1)
expected = self.ymd.groupby(level="month").transform(np.sum)
tm.assert_frame_equal(result, expected)
# Series
result = month_sums["A"].reindex(self.ymd.index, level=1)
expected = self.ymd["A"].groupby(level="month").transform(np.sum)
tm.assert_series_equal(result, expected, check_names=False)
# axis=1
month_sums = self.ymd.T.sum(axis=1, level="month")
result = month_sums.reindex(columns=self.ymd.index, level=1)
expected = self.ymd.groupby(level="month").transform(np.sum).T
tm.assert_frame_equal(result, expected)
def test_binops_level(self):
def _check_op(opname):
op = getattr(DataFrame, opname)
month_sums = self.ymd.sum(level="month")
result = op(self.ymd, month_sums, level="month")
broadcasted = self.ymd.groupby(level="month").transform(np.sum)
expected = op(self.ymd, broadcasted)
tm.assert_frame_equal(result, expected)
# Series
op = getattr(Series, opname)
result = op(self.ymd["A"], month_sums["A"], level="month")
broadcasted = self.ymd["A"].groupby(level="month").transform(np.sum)
expected = op(self.ymd["A"], broadcasted)
expected.name = "A"
tm.assert_series_equal(result, expected)
_check_op("sub")
_check_op("add")
_check_op("mul")
_check_op("div")
def test_pickle(self):
def _test_roundtrip(frame):
unpickled = tm.round_trip_pickle(frame)
tm.assert_frame_equal(frame, unpickled)
_test_roundtrip(self.frame)
_test_roundtrip(self.frame.T)
_test_roundtrip(self.ymd)
_test_roundtrip(self.ymd.T)
def test_reindex(self):
expected = self.frame.iloc[[0, 3]]
reindexed = self.frame.loc[[("foo", "one"), ("bar", "one")]]
tm.assert_frame_equal(reindexed, expected)
def test_reindex_preserve_levels(self):
new_index = self.ymd.index[::10]
chunk = self.ymd.reindex(new_index)
assert chunk.index is new_index
chunk = self.ymd.loc[new_index]
assert chunk.index is new_index
ymdT = self.ymd.T
chunk = ymdT.reindex(columns=new_index)
assert chunk.columns is new_index
chunk = ymdT.loc[:, new_index]
assert chunk.columns is new_index
def test_repr_to_string(self):
repr(self.frame)
repr(self.ymd)
repr(self.frame.T)
repr(self.ymd.T)
buf = StringIO()
self.frame.to_string(buf=buf)
self.ymd.to_string(buf=buf)
self.frame.T.to_string(buf=buf)
self.ymd.T.to_string(buf=buf)
def test_repr_name_coincide(self):
index = MultiIndex.from_tuples(
[("a", 0, "foo"), ("b", 1, "bar")], names=["a", "b", "c"]
)
df = DataFrame({"value": [0, 1]}, index=index)
lines = repr(df).split("\n")
assert lines[2].startswith("a 0 foo")
def test_delevel_infer_dtype(self):
tuples = list(product(["foo", "bar"], [10, 20], [1.0, 1.1]))
index = MultiIndex.from_tuples(tuples, names=["prm0", "prm1", "prm2"])
df = DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"], index=index)
deleveled = df.reset_index()
assert is_integer_dtype(deleveled["prm1"])
assert is_float_dtype(deleveled["prm2"])
def test_reset_index_with_drop(self):
deleveled = self.ymd.reset_index(drop=True)
assert len(deleveled.columns) == len(self.ymd.columns)
assert deleveled.index.name == self.ymd.index.name
deleveled = self.series.reset_index()
assert isinstance(deleveled, DataFrame)
assert len(deleveled.columns) == len(self.series.index.levels) + 1
assert deleveled.index.name == self.series.index.name
deleveled = self.series.reset_index(drop=True)
assert isinstance(deleveled, Series)
assert deleveled.index.name == self.series.index.name
def test_count_level(self):
def _check_counts(frame, axis=0):
index = frame._get_axis(axis)
for i in range(index.nlevels):
result = frame.count(axis=axis, level=i)
expected = frame.groupby(axis=axis, level=i).count()
expected = expected.reindex_like(result).astype("i8")
tm.assert_frame_equal(result, expected)
self.frame.iloc[1, [1, 2]] = np.nan
self.frame.iloc[7, [0, 1]] = np.nan
self.ymd.iloc[1, [1, 2]] = np.nan
self.ymd.iloc[7, [0, 1]] = np.nan
_check_counts(self.frame)
_check_counts(self.ymd)
_check_counts(self.frame.T, axis=1)
_check_counts(self.ymd.T, axis=1)
# can't call with level on regular DataFrame
df = tm.makeTimeDataFrame()
with pytest.raises(TypeError, match="hierarchical"):
df.count(level=0)
self.frame["D"] = "foo"
result = self.frame.count(level=0, numeric_only=True)
tm.assert_index_equal(result.columns, Index(list("ABC"), name="exp"))
def test_count_level_series(self):
index = MultiIndex(
levels=[["foo", "bar", "baz"], ["one", "two", "three", "four"]],
codes=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]],
)
s = Series(np.random.randn(len(index)), index=index)
result = s.count(level=0)
expected = s.groupby(level=0).count()
tm.assert_series_equal(
result.astype("f8"), expected.reindex(result.index).fillna(0)
)
result = s.count(level=1)
expected = s.groupby(level=1).count()
tm.assert_series_equal(
result.astype("f8"), expected.reindex(result.index).fillna(0)
)
def test_count_level_corner(self):
s = self.frame["A"][:0]
result = s.count(level=0)
expected = Series(0, index=s.index.levels[0], name="A")
tm.assert_series_equal(result, expected)
df = self.frame[:0]
result = df.count(level=0)
expected = (
DataFrame(index=s.index.levels[0].set_names(["first"]), columns=df.columns)
.fillna(0)
.astype(np.int64)
)
tm.assert_frame_equal(result, expected)
def test_get_level_number_out_of_bounds(self):
with pytest.raises(IndexError, match="Too many levels"):
self.frame.index._get_level_number(2)
with pytest.raises(IndexError, match="not a valid level number"):
self.frame.index._get_level_number(-3)
def test_unstack(self):
# just check that it works for now
unstacked = self.ymd.unstack()
unstacked.unstack()
# test that ints work
self.ymd.astype(int).unstack()
# test that int32 work
self.ymd.astype(np.int32).unstack()
@pytest.mark.parametrize(
"result_rows,result_columns,index_product,expected_row",
[
(
[[1, 1, None, None, 30.0, None], [2, 2, None, None, 30.0, None]],
["ix1", "ix2", "col1", "col2", "col3", "col4"],
2,
[None, None, 30.0, None],
),
(
[[1, 1, None, None, 30.0], [2, 2, None, None, 30.0]],
["ix1", "ix2", "col1", "col2", "col3"],
2,
[None, None, 30.0],
),
(
[[1, 1, None, None, 30.0], [2, None, None, None, 30.0]],
["ix1", "ix2", "col1", "col2", "col3"],
None,
[None, None, 30.0],
),
],
)
def test_unstack_partial(
self, result_rows, result_columns, index_product, expected_row
):
# check for regressions on this issue:
# https://github.com/pandas-dev/pandas/issues/19351
# make sure DataFrame.unstack() works when its run on a subset of the DataFrame
# and the Index levels contain values that are not present in the subset
result = pd.DataFrame(result_rows, columns=result_columns).set_index(
["ix1", "ix2"]
)
result = result.iloc[1:2].unstack("ix2")
expected = pd.DataFrame(
[expected_row],
columns=pd.MultiIndex.from_product(
[result_columns[2:], [index_product]], names=[None, "ix2"]
),
index=pd.Index([2], name="ix1"),
)
tm.assert_frame_equal(result, expected)
def test_unstack_multiple_no_empty_columns(self):
index = MultiIndex.from_tuples(
[(0, "foo", 0), (0, "bar", 0), (1, "baz", 1), (1, "qux", 1)]
)
s = Series(np.random.randn(4), index=index)
unstacked = s.unstack([1, 2])
expected = unstacked.dropna(axis=1, how="all")
tm.assert_frame_equal(unstacked, expected)
def test_stack(self):
# regular roundtrip
unstacked = self.ymd.unstack()
restacked = unstacked.stack()
tm.assert_frame_equal(restacked, self.ymd)
unlexsorted = self.ymd.sort_index(level=2)
unstacked = unlexsorted.unstack(2)
restacked = unstacked.stack()
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
unlexsorted = unlexsorted[::-1]
unstacked = unlexsorted.unstack(1)
restacked = unstacked.stack().swaplevel(1, 2)
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
unlexsorted = unlexsorted.swaplevel(0, 1)
unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
restacked = unstacked.stack(0).swaplevel(1, 2)
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
# columns unsorted
unstacked = self.ymd.unstack()
unstacked = unstacked.sort_index(axis=1, ascending=False)
restacked = unstacked.stack()
tm.assert_frame_equal(restacked, self.ymd)
# more than 2 levels in the columns
unstacked = self.ymd.unstack(1).unstack(1)
result = unstacked.stack(1)
expected = self.ymd.unstack()
tm.assert_frame_equal(result, expected)
result = unstacked.stack(2)
expected = self.ymd.unstack(1)
tm.assert_frame_equal(result, expected)
result = unstacked.stack(0)
expected = self.ymd.stack().unstack(1).unstack(1)
tm.assert_frame_equal(result, expected)
# not all levels present in each echelon
unstacked = self.ymd.unstack(2).loc[:, ::3]
stacked = unstacked.stack().stack()
ymd_stacked = self.ymd.stack()
tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))
# stack with negative number
result = self.ymd.unstack(0).stack(-2)
expected = self.ymd.unstack(0).stack(0)
# GH10417
def check(left, right):
tm.assert_series_equal(left, right)
assert left.index.is_unique is False
li, ri = left.index, right.index
tm.assert_index_equal(li, ri)
df = DataFrame(
np.arange(12).reshape(4, 3),
index=list("abab"),
columns=["1st", "2nd", "3rd"],
)
mi = MultiIndex(
levels=[["a", "b"], ["1st", "2nd", "3rd"]],
codes=[np.tile(np.arange(2).repeat(3), 2), np.tile(np.arange(3), 4)],
)
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
df.columns = ["1st", "2nd", "1st"]
mi = MultiIndex(
levels=[["a", "b"], ["1st", "2nd"]],
codes=[np.tile(np.arange(2).repeat(3), 2), np.tile([0, 1, 0], 4)],
)
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
tpls = ("a", 2), ("b", 1), ("a", 1), ("b", 2)
df.index = MultiIndex.from_tuples(tpls)
mi = MultiIndex(
levels=[["a", "b"], [1, 2], ["1st", "2nd"]],
codes=[
np.tile(np.arange(2).repeat(3), 2),
np.repeat([1, 0, 1], [3, 6, 3]),
np.tile([0, 1, 0], 4),
],
)
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
def test_unstack_odd_failure(self):
data = """day,time,smoker,sum,len
Fri,Dinner,No,8.25,3.
Fri,Dinner,Yes,27.03,9
Fri,Lunch,No,3.0,1
Fri,Lunch,Yes,13.68,6
Sat,Dinner,No,139.63,45
Sat,Dinner,Yes,120.77,42
Sun,Dinner,No,180.57,57
Sun,Dinner,Yes,66.82,19
Thur,Dinner,No,3.0,1
Thur,Lunch,No,117.32,44
Thur,Lunch,Yes,51.51,17"""
df = pd.read_csv(StringIO(data)).set_index(["day", "time", "smoker"])
# it works, #2100
result = df.unstack(2)
recons = result.stack()
tm.assert_frame_equal(recons, df)
def test_stack_mixed_dtype(self):
df = self.frame.T
df["foo", "four"] = "foo"
df = df.sort_index(level=1, axis=1)
stacked = df.stack()
result = df["foo"].stack().sort_index()
tm.assert_series_equal(stacked["foo"], result, check_names=False)
assert result.name is None
assert stacked["bar"].dtype == np.float_
def test_unstack_bug(self):
df = DataFrame(
{
"state": ["naive", "naive", "naive", "activ", "activ", "activ"],
"exp": ["a", "b", "b", "b", "a", "a"],
"barcode": [1, 2, 3, 4, 1, 3],
"v": ["hi", "hi", "bye", "bye", "bye", "peace"],
"extra": np.arange(6.0),
}
)
result = df.groupby(["state", "exp", "barcode", "v"]).apply(len)
unstacked = result.unstack()
restacked = unstacked.stack()
tm.assert_series_equal(restacked, result.reindex(restacked.index).astype(float))
def test_stack_unstack_preserve_names(self):
unstacked = self.frame.unstack()
assert unstacked.index.name == "first"
assert unstacked.columns.names == ["exp", "second"]
restacked = unstacked.stack()
assert restacked.index.names == self.frame.index.names
@pytest.mark.parametrize("method", ["stack", "unstack"])
def test_stack_unstack_wrong_level_name(self, method):
# GH 18303 - wrong level name should raise
# A DataFrame with flat axes:
df = self.frame.loc["foo"]
with pytest.raises(KeyError, match="does not match index name"):
getattr(df, method)("mistake")
if method == "unstack":
# Same on a Series:
s = df.iloc[:, 0]
with pytest.raises(KeyError, match="does not match index name"):
getattr(s, method)("mistake")
def test_unused_level_raises(self):
# GH 20410
mi = MultiIndex(
levels=[["a_lot", "onlyone", "notevenone"], [1970, ""]],
codes=[[1, 0], [1, 0]],
)
df = DataFrame(-1, index=range(3), columns=mi)
with pytest.raises(KeyError, match="notevenone"):
df["notevenone"]
def test_unstack_level_name(self):
result = self.frame.unstack("second")
expected = self.frame.unstack(level=1)
tm.assert_frame_equal(result, expected)
def test_stack_level_name(self):
unstacked = self.frame.unstack("second")
result = unstacked.stack("exp")
expected = self.frame.unstack().stack(0)
tm.assert_frame_equal(result, expected)
result = self.frame.stack("exp")
expected = self.frame.stack()
tm.assert_series_equal(result, expected)
def test_stack_unstack_multiple(self):
unstacked = self.ymd.unstack(["year", "month"])
expected = self.ymd.unstack("year").unstack("month")
tm.assert_frame_equal(unstacked, expected)
assert unstacked.columns.names == expected.columns.names
# series
s = self.ymd["A"]
s_unstacked = s.unstack(["year", "month"])
tm.assert_frame_equal(s_unstacked, expected["A"])
restacked = unstacked.stack(["year", "month"])
restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
restacked = restacked.sort_index(level=0)
tm.assert_frame_equal(restacked, self.ymd)
assert restacked.index.names == self.ymd.index.names
# GH #451
unstacked = self.ymd.unstack([1, 2])
expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how="all")
tm.assert_frame_equal(unstacked, expected)
unstacked = self.ymd.unstack([2, 1])
expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how="all")
tm.assert_frame_equal(unstacked, expected.loc[:, unstacked.columns])
def test_stack_names_and_numbers(self):
unstacked = self.ymd.unstack(["year", "month"])
# Can't use mixture of names and numbers to stack
with pytest.raises(ValueError, match="level should contain"):
unstacked.stack([0, "month"])
def test_stack_multiple_out_of_bounds(self):
# nlevels == 3
unstacked = self.ymd.unstack(["year", "month"])
with pytest.raises(IndexError, match="Too many levels"):
unstacked.stack([2, 3])
with pytest.raises(IndexError, match="not a valid level number"):
unstacked.stack([-4, -3])
def test_unstack_period_series(self):
# GH 4342
idx1 = pd.PeriodIndex(
["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
freq="M",
name="period",
)
idx2 = Index(["A", "B"] * 3, name="str")
value = [1, 2, 3, 4, 5, 6]
idx = MultiIndex.from_arrays([idx1, idx2])
s = Series(value, index=idx)
result1 = s.unstack()
result2 = s.unstack(level=1)
result3 = s.unstack(level=0)
e_idx = pd.PeriodIndex(
["2013-01", "2013-02", "2013-03"], freq="M", name="period"
)
expected = DataFrame(
{"A": [1, 3, 5], "B": [2, 4, 6]}, index=e_idx, columns=["A", "B"]
)
expected.columns.name = "str"
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected.T)
idx1 = pd.PeriodIndex(
["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
freq="M",
name="period1",
)
idx2 = pd.PeriodIndex(
["2013-12", "2013-11", "2013-10", "2013-09", "2013-08", "2013-07"],
freq="M",
name="period2",
)
idx = MultiIndex.from_arrays([idx1, idx2])
s = Series(value, index=idx)
result1 = s.unstack()
result2 = s.unstack(level=1)
result3 = s.unstack(level=0)
e_idx = pd.PeriodIndex(
["2013-01", "2013-02", "2013-03"], freq="M", name="period1"
)
e_cols = pd.PeriodIndex(
["2013-07", "2013-08", "2013-09", "2013-10", "2013-11", "2013-12"],
freq="M",
name="period2",
)
expected = DataFrame(
[
[np.nan, np.nan, np.nan, np.nan, 2, 1],
[np.nan, np.nan, 4, 3, np.nan, np.nan],
[6, 5, np.nan, np.nan, np.nan, np.nan],
],
index=e_idx,
columns=e_cols,
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected.T)
def test_unstack_period_frame(self):
# GH 4342
idx1 = pd.PeriodIndex(
["2014-01", "2014-02", "2014-02", "2014-02", "2014-01", "2014-01"],
freq="M",
name="period1",
)
idx2 = pd.PeriodIndex(
["2013-12", "2013-12", "2014-02", "2013-10", "2013-10", "2014-02"],
freq="M",
name="period2",
)
value = {"A": [1, 2, 3, 4, 5, 6], "B": [6, 5, 4, 3, 2, 1]}
idx = MultiIndex.from_arrays([idx1, idx2])
df = DataFrame(value, index=idx)
result1 = df.unstack()
result2 = df.unstack(level=1)
result3 = df.unstack(level=0)
e_1 = pd.PeriodIndex(["2014-01", "2014-02"], freq="M", name="period1")
e_2 = pd.PeriodIndex(
["2013-10", "2013-12", "2014-02", "2013-10", "2013-12", "2014-02"],
freq="M",
name="period2",
)
e_cols = MultiIndex.from_arrays(["A A A B B B".split(), e_2])
expected = DataFrame(
[[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
e_1 = pd.PeriodIndex(
["2014-01", "2014-02", "2014-01", "2014-02"], freq="M", name="period1"
)
e_2 = pd.PeriodIndex(
["2013-10", "2013-12", "2014-02"], freq="M", name="period2"
)
e_cols = MultiIndex.from_arrays(["A A B B".split(), e_1])
expected = DataFrame(
[[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols
)
tm.assert_frame_equal(result3, expected)
def test_stack_multiple_bug(self):
""" bug when some uniques are not present in the data #3170"""
id_col = ([1] * 3) + ([2] * 3)
name = (["a"] * 3) + (["b"] * 3)
date = pd.to_datetime(["2013-01-03", "2013-01-04", "2013-01-05"] * 2)
var1 = np.random.randint(0, 100, 6)
df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1))
multi = df.set_index(["DATE", "ID"])
multi.columns.name = "Params"
unst = multi.unstack("ID")
down = unst.resample("W-THU").mean()
rs = down.stack("ID")
xp = unst.loc[:, ["VAR1"]].resample("W-THU").mean().stack("ID")
xp.columns.name = "Params"
tm.assert_frame_equal(rs, xp)
def test_stack_dropna(self):
# GH #3997
df = DataFrame({"A": ["a1", "a2"], "B": ["b1", "b2"], "C": [1, 1]})
df = df.set_index(["A", "B"])
stacked = df.unstack().stack(dropna=False)
assert len(stacked) > len(stacked.dropna())
stacked = df.unstack().stack(dropna=True)
tm.assert_frame_equal(stacked, stacked.dropna())
def test_unstack_multiple_hierarchical(self):
df = DataFrame(
index=[
[0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 0, 0, 1, 1],
[0, 1, 0, 1, 0, 1, 0, 1],
],
columns=[[0, 0, 1, 1], [0, 1, 0, 1]],
)
df.index.names = ["a", "b", "c"]
df.columns.names = ["d", "e"]
# it works!
df.unstack(["b", "c"])
def test_groupby_transform(self):
s = self.frame["A"]
grouper = s.index.get_level_values(0)
grouped = s.groupby(grouper)
applied = grouped.apply(lambda x: x * 2)
expected = grouped.transform(lambda x: x * 2)
result = applied.reindex(expected.index)
tm.assert_series_equal(result, expected, check_names=False)
def test_unstack_sparse_keyspace(self):
# memory problems with naive impl #2278
# Generate Long File & Test Pivot
NUM_ROWS = 1000
df = DataFrame(
{
"A": np.random.randint(100, size=NUM_ROWS),
"B": np.random.randint(300, size=NUM_ROWS),
"C": np.random.randint(-7, 7, size=NUM_ROWS),
"D": np.random.randint(-19, 19, size=NUM_ROWS),
"E": np.random.randint(3000, size=NUM_ROWS),
"F": np.random.randn(NUM_ROWS),
}
)
idf = df.set_index(["A", "B", "C", "D", "E"])
# it works! is sufficient
idf.unstack("E")
def test_unstack_unobserved_keys(self):
# related to #2278 refactoring
levels = [[0, 1], [0, 1, 2, 3]]
codes = [[0, 0, 1, 1], [0, 2, 0, 2]]
index = MultiIndex(levels, codes)
df = DataFrame(np.random.randn(4, 2), index=index)
result = df.unstack()
assert len(result.columns) == 4
recons = result.stack()
tm.assert_frame_equal(recons, df)
@pytest.mark.slow
def test_unstack_number_of_levels_larger_than_int32(self):
# GH 20601
df = DataFrame(
np.random.randn(2 ** 16, 2), index=[np.arange(2 ** 16), np.arange(2 ** 16)]
)
with pytest.raises(ValueError, match="int32 overflow"):
df.unstack()
def test_stack_order_with_unsorted_levels(self):
# GH 16323
def manual_compare_stacked(df, df_stacked, lev0, lev1):
assert all(
df.loc[row, col] == df_stacked.loc[(row, col[lev0]), col[lev1]]
for row in df.index
for col in df.columns
)
# deep check for 1-row case
for width in [2, 3]:
levels_poss = itertools.product(
itertools.permutations([0, 1, 2], width), repeat=2
)
for levels in levels_poss:
columns = MultiIndex(levels=levels, codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
df = DataFrame(columns=columns, data=[range(4)])
for stack_lev in range(2):
df_stacked = df.stack(stack_lev)
manual_compare_stacked(df, df_stacked, stack_lev, 1 - stack_lev)
# check multi-row case
mi = MultiIndex(
levels=[["A", "C", "B"], ["B", "A", "C"]],
codes=[np.repeat(range(3), 3), np.tile(range(3), 3)],
)
df = DataFrame(
columns=mi, index=range(5), data=np.arange(5 * len(mi)).reshape(5, -1)
)
manual_compare_stacked(df, df.stack(0), 0, 1)
def test_groupby_corner(self):
midx = MultiIndex(
levels=[["foo"], ["bar"], ["baz"]],
codes=[[0], [0], [0]],
names=["one", "two", "three"],
)
df = DataFrame([np.random.rand(4)], columns=["a", "b", "c", "d"], index=midx)
# should work
df.groupby(level="three")
def test_groupby_level_no_obs(self):
# #1697
midx = MultiIndex.from_tuples(
[
("f1", "s1"),
("f1", "s2"),
("f2", "s1"),
("f2", "s2"),
("f3", "s1"),
("f3", "s2"),
]
)
df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx)
df1 = df.loc(axis=1)[df.columns.map(lambda u: u[0] in ["f2", "f3"])]
grouped = df1.groupby(axis=1, level=0)
result = grouped.sum()
assert (result.columns == ["f2", "f3"]).all()
def test_join(self):
a = self.frame.loc[self.frame.index[:5], ["A"]]
b = self.frame.loc[self.frame.index[2:], ["B", "C"]]
joined = a.join(b, how="outer").reindex(self.frame.index)
expected = self.frame.copy()
expected.values[np.isnan(joined.values)] = np.nan
assert not np.isnan(joined.values).all()
# TODO what should join do with names ?
tm.assert_frame_equal(joined, expected, check_names=False)
def test_swaplevel(self):
swapped = self.frame["A"].swaplevel()
swapped2 = self.frame["A"].swaplevel(0)
swapped3 = self.frame["A"].swaplevel(0, 1)
swapped4 = self.frame["A"].swaplevel("first", "second")
assert not swapped.index.equals(self.frame.index)
tm.assert_series_equal(swapped, swapped2)
tm.assert_series_equal(swapped, swapped3)
tm.assert_series_equal(swapped, swapped4)
back = swapped.swaplevel()
back2 = swapped.swaplevel(0)
back3 = swapped.swaplevel(0, 1)
back4 = swapped.swaplevel("second", "first")
assert back.index.equals(self.frame.index)
tm.assert_series_equal(back, back2)
tm.assert_series_equal(back, back3)
tm.assert_series_equal(back, back4)
ft = self.frame.T
swapped = ft.swaplevel("first", "second", axis=1)
exp = self.frame.swaplevel("first", "second").T
tm.assert_frame_equal(swapped, exp)
def test_reorder_levels(self):
result = self.ymd.reorder_levels(["month", "day", "year"])
expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2)
tm.assert_frame_equal(result, expected)
result = self.ymd["A"].reorder_levels(["month", "day", "year"])
expected = self.ymd["A"].swaplevel(0, 1).swaplevel(1, 2)
tm.assert_series_equal(result, expected)
result = self.ymd.T.reorder_levels(["month", "day", "year"], axis=1)
expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1)
tm.assert_frame_equal(result, expected)
with pytest.raises(TypeError, match="hierarchical axis"):
self.ymd.reorder_levels([1, 2], axis=1)
with pytest.raises(IndexError, match="Too many levels"):
self.ymd.index.reorder_levels([1, 2, 3])
def test_insert_index(self):
df = self.ymd[:5].T
df[2000, 1, 10] = df[2000, 1, 7]
assert isinstance(df.columns, MultiIndex)
assert (df[2000, 1, 10] == df[2000, 1, 7]).all()
def test_alignment(self):
x = Series(
data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])
)
y = Series(
data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])
)
res = x - y
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
# hit non-monotonic code path
res = x[::-1] - y[::-1]
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
def test_count(self):
frame = self.frame.copy()
frame.index.names = ["a", "b"]
result = frame.count(level="b")
expect = self.frame.count(level=1)
tm.assert_frame_equal(result, expect, check_names=False)
result = frame.count(level="a")
expect = self.frame.count(level=0)
tm.assert_frame_equal(result, expect, check_names=False)
series = self.series.copy()
series.index.names = ["a", "b"]
result = series.count(level="b")
expect = self.series.count(level=1).rename_axis("b")
tm.assert_series_equal(result, expect)
result = series.count(level="a")
expect = self.series.count(level=0).rename_axis("a")
tm.assert_series_equal(result, expect)
msg = "Level x not found"
with pytest.raises(KeyError, match=msg):
series.count("x")
with pytest.raises(KeyError, match=msg):
frame.count(level="x")
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
@pytest.mark.parametrize("level", [0, 1])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_series_group_min_max(self, op, level, skipna, sort):
# GH 17537
grouped = self.series.groupby(level=level, sort=sort)
# skipna=True
leftside = grouped.agg(lambda x: getattr(x, op)(skipna=skipna))
rightside = getattr(self.series, op)(level=level, skipna=skipna)
if sort:
rightside = rightside.sort_index(level=level)
tm.assert_series_equal(leftside, rightside)
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
@pytest.mark.parametrize("level", [0, 1])
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_frame_group_ops(self, op, level, axis, skipna, sort):
# GH 17537
self.frame.iloc[1, [1, 2]] = np.nan
self.frame.iloc[7, [0, 1]] = np.nan
level_name = self.frame.index.names[level]
if axis == 0:
frame = self.frame
else:
frame = self.frame.T
grouped = frame.groupby(level=level, axis=axis, sort=sort)
pieces = []
def aggf(x):
pieces.append(x)
return getattr(x, op)(skipna=skipna, axis=axis)
leftside = grouped.agg(aggf)
rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna)
if sort:
rightside = rightside.sort_index(level=level, axis=axis)
frame = frame.sort_index(level=level, axis=axis)
# for good measure, groupby detail
level_index = frame._get_axis(axis).levels[level].rename(level_name)
tm.assert_index_equal(leftside._get_axis(axis), level_index)
tm.assert_index_equal(rightside._get_axis(axis), level_index)
tm.assert_frame_equal(leftside, rightside)
def test_stat_op_corner(self):
obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)]))
result = obj.sum(level=0)
expected = Series([10.0], index=[2])
tm.assert_series_equal(result, expected)
def test_frame_any_all_group(self):
df = DataFrame(
{"data": [False, False, True, False, True, False, True]},
index=[
["one", "one", "two", "one", "two", "two", "two"],
[0, 1, 0, 2, 1, 2, 3],
],
)
result = df.any(level=0)
ex = DataFrame({"data": [False, True]}, index=["one", "two"])
tm.assert_frame_equal(result, ex)
result = df.all(level=0)
ex = DataFrame({"data": [False, False]}, index=["one", "two"])
tm.assert_frame_equal(result, ex)
def test_series_any_timedelta(self):
# GH 17667
df = DataFrame(
{
"a": Series([0, 0]),
"t": Series([pd.to_timedelta(0, "s"), pd.to_timedelta(1, "ms")]),
}
)
result = df.any(axis=0)
expected = Series(data=[False, True], index=["a", "t"])
tm.assert_series_equal(result, expected)
result = df.any(axis=1)
expected = Series(data=[False, True])
tm.assert_series_equal(result, expected)
def test_std_var_pass_ddof(self):
index = MultiIndex.from_arrays(
[np.arange(5).repeat(10), np.tile(np.arange(10), 5)]
)
df = DataFrame(np.random.randn(len(index), 5), index=index)
for meth in ["var", "std"]:
ddof = 4
alt = lambda x: getattr(x, meth)(ddof=ddof)
result = getattr(df[0], meth)(level=0, ddof=ddof)
expected = df[0].groupby(level=0).agg(alt)
tm.assert_series_equal(result, expected)
result = getattr(df, meth)(level=0, ddof=ddof)
expected = df.groupby(level=0).agg(alt)
tm.assert_frame_equal(result, expected)
def test_frame_series_agg_multiple_levels(self):
result = self.ymd.sum(level=["year", "month"])
expected = self.ymd.groupby(level=["year", "month"]).sum()
tm.assert_frame_equal(result, expected)
result = self.ymd["A"].sum(level=["year", "month"])
expected = self.ymd["A"].groupby(level=["year", "month"]).sum()
tm.assert_series_equal(result, expected)
def test_groupby_multilevel(self):
result = self.ymd.groupby(level=[0, 1]).mean()
k1 = self.ymd.index.get_level_values(0)
k2 = self.ymd.index.get_level_values(1)
expected = self.ymd.groupby([k1, k2]).mean()
# TODO groupby with level_values drops names
tm.assert_frame_equal(result, expected, check_names=False)
assert result.index.names == self.ymd.index.names[:2]
result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean()
tm.assert_frame_equal(result, result2)
def test_groupby_multilevel_with_transform(self):
pass
def test_multilevel_consolidate(self):
index = MultiIndex.from_tuples(
[("foo", "one"), ("foo", "two"), ("bar", "one"), ("bar", "two")]
)
df = DataFrame(np.random.randn(4, 4), index=index, columns=index)
df["Totals", ""] = df.sum(1)
df = df._consolidate()
def test_loc_preserve_names(self):
result = self.ymd.loc[2000]
result2 = self.ymd["A"].loc[2000]
assert result.index.names == self.ymd.index.names[1:]
assert result2.index.names == self.ymd.index.names[1:]
result = self.ymd.loc[2000, 2]
result2 = self.ymd["A"].loc[2000, 2]
assert result.index.name == self.ymd.index.names[2]
assert result2.index.name == self.ymd.index.names[2]
def test_unstack_preserve_types(self):
# GH #403
self.ymd["E"] = "foo"
self.ymd["F"] = 2
unstacked = self.ymd.unstack("month")
assert unstacked["A", 1].dtype == np.float64
assert unstacked["E", 1].dtype == np.object_
assert unstacked["F", 1].dtype == np.float64
def test_unstack_group_index_overflow(self):
codes = np.tile(np.arange(500), 2)
level = np.arange(500)
index = MultiIndex(
levels=[level] * 8 + [[0, 1]],
codes=[codes] * 8 + [np.arange(2).repeat(500)],
)
s = Series(np.arange(1000), index=index)
result = s.unstack()
assert result.shape == (500, 2)
# test roundtrip
stacked = result.stack()
tm.assert_series_equal(s, stacked.reindex(s.index))
# put it at beginning
index = MultiIndex(
levels=[[0, 1]] + [level] * 8,
codes=[np.arange(2).repeat(500)] + [codes] * 8,
)
s = Series(np.arange(1000), index=index)
result = s.unstack(0)
assert result.shape == (500, 2)
# put it in middle
index = MultiIndex(
levels=[level] * 4 + [[0, 1]] + [level] * 4,
codes=([codes] * 4 + [np.arange(2).repeat(500)] + [codes] * 4),
)
s = Series(np.arange(1000), index=index)
result = s.unstack(4)
assert result.shape == (500, 2)
def test_pyint_engine(self):
# GH 18519 : when combinations of codes cannot be represented in 64
# bits, the index underlying the MultiIndex engine works with Python
# integers, rather than uint64.
N = 5
keys = [
tuple(l)
for l in [
[0] * 10 * N,
[1] * 10 * N,
[2] * 10 * N,
[np.nan] * N + [2] * 9 * N,
[0] * N + [2] * 9 * N,
[np.nan] * N + [2] * 8 * N + [0] * N,
]
]
# Each level contains 4 elements (including NaN), so it is represented
# in 2 bits, for a total of 2*N*10 = 100 > 64 bits. If we were using a
# 64 bit engine and truncating the first levels, the fourth and fifth
# keys would collide; if truncating the last levels, the fifth and
# sixth; if rotating bits rather than shifting, the third and fifth.
for idx in range(len(keys)):
index = MultiIndex.from_tuples(keys)
assert index.get_loc(keys[idx]) == idx
expected = np.arange(idx + 1, dtype=np.intp)
result = index.get_indexer([keys[i] for i in expected])
tm.assert_numpy_array_equal(result, expected)
# With missing key:
idces = range(len(keys))
expected = np.array([-1] + list(idces), dtype=np.intp)
missing = tuple([0, 1] * 5 * N)
result = index.get_indexer([missing] + [keys[i] for i in idces])
tm.assert_numpy_array_equal(result, expected)
def test_to_html(self):
self.ymd.columns.name = "foo"
self.ymd.to_html()
self.ymd.T.to_html()
def test_level_with_tuples(self):
index = MultiIndex(
levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
)
series = Series(np.random.randn(6), index=index)
frame = DataFrame(np.random.randn(6, 4), index=index)
result = series[("foo", "bar", 0)]
result2 = series.loc[("foo", "bar", 0)]
expected = series[:2]
expected.index = expected.index.droplevel(0)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
with pytest.raises(KeyError, match=r"^\(\('foo', 'bar', 0\), 2\)$"):
series[("foo", "bar", 0), 2]
result = frame.loc[("foo", "bar", 0)]
result2 = frame.xs(("foo", "bar", 0))
expected = frame[:2]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
index = MultiIndex(
levels=[[("foo", "bar"), ("foo", "baz"), ("foo", "qux")], [0, 1]],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
)
series = Series(np.random.randn(6), index=index)
frame = DataFrame(np.random.randn(6, 4), index=index)
result = series[("foo", "bar")]
result2 = series.loc[("foo", "bar")]
expected = series[:2]
expected.index = expected.index.droplevel(0)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
result = frame.loc[("foo", "bar")]
result2 = frame.xs(("foo", "bar"))
expected = frame[:2]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
def test_mixed_depth_drop(self):
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(randn(4, 6), columns=index)
result = df.drop("a", axis=1)
expected = df.drop([("a", "", "")], axis=1)
tm.assert_frame_equal(expected, result)
result = df.drop(["top"], axis=1)
expected = df.drop([("top", "OD", "wx")], axis=1)
expected = expected.drop([("top", "OD", "wy")], axis=1)
tm.assert_frame_equal(expected, result)
result = df.drop(("top", "OD", "wx"), axis=1)
expected = df.drop([("top", "OD", "wx")], axis=1)
tm.assert_frame_equal(expected, result)
expected = df.drop([("top", "OD", "wy")], axis=1)
expected = df.drop("top", axis=1)
result = df.drop("result1", level=1, axis=1)
expected = df.drop(
[("routine1", "result1", ""), ("routine2", "result1", "")], axis=1
)
tm.assert_frame_equal(expected, result)
def test_drop_multiindex_other_level_nan(self):
# GH 12754
df = (
DataFrame(
{
"A": ["one", "one", "two", "two"],
"B": [np.nan, 0.0, 1.0, 2.0],
"C": ["a", "b", "c", "c"],
"D": [1, 2, 3, 4],
}
)
.set_index(["A", "B", "C"])
.sort_index()
)
result = df.drop("c", level="C")
expected = DataFrame(
[2, 1],
columns=["D"],
index=pd.MultiIndex.from_tuples(
[("one", 0.0, "b"), ("one", np.nan, "a")], names=["A", "B", "C"]
),
)
tm.assert_frame_equal(result, expected)
def test_drop_nonunique(self):
df = DataFrame(
[
["x-a", "x", "a", 1.5],
["x-a", "x", "a", 1.2],
["z-c", "z", "c", 3.1],
["x-a", "x", "a", 4.1],
["x-b", "x", "b", 5.1],
["x-b", "x", "b", 4.1],
["x-b", "x", "b", 2.2],
["y-a", "y", "a", 1.2],
["z-b", "z", "b", 2.1],
],
columns=["var1", "var2", "var3", "var4"],
)
grp_size = df.groupby("var1").size()
drop_idx = grp_size.loc[grp_size == 1]
idf = df.set_index(["var1", "var2", "var3"])
# it works! #2101
result = idf.drop(drop_idx.index, level=0).reset_index()
expected = df[-df.var1.isin(drop_idx.index)]
result.index = expected.index
tm.assert_frame_equal(result, expected)
def test_mixed_depth_pop(self):
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(randn(4, 6), columns=index)
df1 = df.copy()
df2 = df.copy()
result = df1.pop("a")
expected = df2.pop(("a", "", ""))
tm.assert_series_equal(expected, result, check_names=False)
tm.assert_frame_equal(df1, df2)
assert result.name == "a"
expected = df1["top"]
df1 = df1.drop(["top"], axis=1)
result = df2.pop("top")
tm.assert_frame_equal(expected, result)
tm.assert_frame_equal(df1, df2)
def test_reindex_level_partial_selection(self):
result = self.frame.reindex(["foo", "qux"], level=0)
expected = self.frame.iloc[[0, 1, 2, 7, 8, 9]]
tm.assert_frame_equal(result, expected)
result = self.frame.T.reindex(["foo", "qux"], axis=1, level=0)
tm.assert_frame_equal(result, expected.T)
result = self.frame.loc[["foo", "qux"]]
tm.assert_frame_equal(result, expected)
result = self.frame["A"].loc[["foo", "qux"]]
tm.assert_series_equal(result, expected["A"])
result = self.frame.T.loc[:, ["foo", "qux"]]
tm.assert_frame_equal(result, expected.T)
def test_drop_level(self):
result = self.frame.drop(["bar", "qux"], level="first")
expected = self.frame.iloc[[0, 1, 2, 5, 6]]
tm.assert_frame_equal(result, expected)
result = self.frame.drop(["two"], level="second")
expected = self.frame.iloc[[0, 2, 3, 6, 7, 9]]
tm.assert_frame_equal(result, expected)
result = self.frame.T.drop(["bar", "qux"], axis=1, level="first")
expected = self.frame.iloc[[0, 1, 2, 5, 6]].T
tm.assert_frame_equal(result, expected)
result = self.frame.T.drop(["two"], axis=1, level="second")
expected = self.frame.iloc[[0, 2, 3, 6, 7, 9]].T
tm.assert_frame_equal(result, expected)
def test_drop_level_nonunique_datetime(self):
# GH 12701
idx = Index([2, 3, 4, 4, 5], name="id")
idxdt = pd.to_datetime(
[
"201603231400",
"201603231500",
"201603231600",
"201603231600",
"201603231700",
]
)
df = DataFrame(np.arange(10).reshape(5, 2), columns=list("ab"), index=idx)
df["tstamp"] = idxdt
df = df.set_index("tstamp", append=True)
ts = Timestamp("201603231600")
assert df.index.is_unique is False
result = df.drop(ts, level="tstamp")
expected = df.loc[idx != 4]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("box", [Series, DataFrame])
def test_drop_tz_aware_timestamp_across_dst(self, box):
# GH 21761
start = Timestamp("2017-10-29", tz="Europe/Berlin")
end = Timestamp("2017-10-29 04:00:00", tz="Europe/Berlin")
index = pd.date_range(start, end, freq="15min")
data = box(data=[1] * len(index), index=index)
result = data.drop(start)
expected_start = Timestamp("2017-10-29 00:15:00", tz="Europe/Berlin")
expected_idx = pd.date_range(expected_start, end, freq="15min")
expected = box(data=[1] * len(expected_idx), index=expected_idx)
tm.assert_equal(result, expected)
def test_drop_preserve_names(self):
index = MultiIndex.from_arrays(
[[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]], names=["one", "two"]
)
df = DataFrame(np.random.randn(6, 3), index=index)
result = df.drop([(0, 2)])
assert result.index.names == ("one", "two")
def test_unicode_repr_issues(self):
levels = [Index(["a/\u03c3", "b/\u03c3", "c/\u03c3"]), Index([0, 1])]
codes = [np.arange(3).repeat(2), np.tile(np.arange(2), 3)]
index = MultiIndex(levels=levels, codes=codes)
repr(index.levels)
# NumPy bug
# repr(index.get_level_values(1))
def test_unicode_repr_level_names(self):
index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=["\u0394", "i1"])
s = Series(range(2), index=index)
df = DataFrame(np.random.randn(2, 4), index=index)
repr(s)
repr(df)
def test_join_segfault(self):
# 1532
df1 = DataFrame({"a": [1, 1], "b": [1, 2], "x": [1, 2]})
df2 = DataFrame({"a": [2, 2], "b": [1, 2], "y": [1, 2]})
df1 = df1.set_index(["a", "b"])
df2 = df2.set_index(["a", "b"])
# it works!
for how in ["left", "right", "outer"]:
df1.join(df2, how=how)
def test_frame_dict_constructor_empty_series(self):
s1 = Series(
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)])
)
s2 = Series(
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)])
)
s3 = Series(dtype=object)
# it works!
DataFrame({"foo": s1, "bar": s2, "baz": s3})
DataFrame.from_dict({"foo": s1, "baz": s3, "bar": s2})
@pytest.mark.parametrize("d", [4, "d"])
def test_empty_frame_groupby_dtypes_consistency(self, d):
# GH 20888
group_keys = ["a", "b", "c"]
df = DataFrame({"a": [1], "b": [2], "c": [3], "d": [d]})
g = df[df.a == 2].groupby(group_keys)
result = g.first().index
expected = MultiIndex(
levels=[[1], [2], [3]], codes=[[], [], []], names=["a", "b", "c"]
)
tm.assert_index_equal(result, expected)
def test_multiindex_na_repr(self):
# only an issue with long columns
df3 = DataFrame(
{
"A" * 30: {("A", "A0006000", "nuit"): "A0006000"},
"B" * 30: {("A", "A0006000", "nuit"): np.nan},
"C" * 30: {("A", "A0006000", "nuit"): np.nan},
"D" * 30: {("A", "A0006000", "nuit"): np.nan},
"E" * 30: {("A", "A0006000", "nuit"): "A"},
"F" * 30: {("A", "A0006000", "nuit"): np.nan},
}
)
idf = df3.set_index(["A" * 30, "C" * 30])
repr(idf)
def test_assign_index_sequences(self):
# #2200
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(
["a", "b"]
)
index = list(df.index)
index[0] = ("faz", "boo")
df.index = index
repr(df)
# this travels an improper code path
index[0] = ["faz", "boo"]
df.index = index
repr(df)
def test_tuples_have_na(self):
index = MultiIndex(
levels=[[1, 0], [0, 1, 2, 3]],
codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
)
assert isna(index[4][0])
assert isna(index.values[4][0])
def test_duplicate_groupby_issues(self):
idx_tp = [
("600809", "20061231"),
("600809", "20070331"),
("600809", "20070630"),
("600809", "20070331"),
]
dt = ["demo", "demo", "demo", "demo"]
idx = MultiIndex.from_tuples(idx_tp, names=["STK_ID", "RPT_Date"])
s = Series(dt, index=idx)
result = s.groupby(s.index).first()
assert len(result) == 3
def test_duplicate_mi(self):
# GH 4516
df = DataFrame(
[
["foo", "bar", 1.0, 1],
["foo", "bar", 2.0, 2],
["bah", "bam", 3.0, 3],
["bah", "bam", 4.0, 4],
["foo", "bar", 5.0, 5],
["bah", "bam", 6.0, 6],
],
columns=list("ABCD"),
)
df = df.set_index(["A", "B"])
df = df.sort_index(level=0)
expected = DataFrame(
[["foo", "bar", 1.0, 1], ["foo", "bar", 2.0, 2], ["foo", "bar", 5.0, 5]],
columns=list("ABCD"),
).set_index(["A", "B"])
result = df.loc[("foo", "bar")]
tm.assert_frame_equal(result, expected)
def test_duplicated_drop_duplicates(self):
# GH 4060
idx = MultiIndex.from_arrays(([1, 2, 3, 1, 2, 3], [1, 1, 1, 1, 2, 2]))
expected = np.array([False, False, False, True, False, False], dtype=bool)
duplicated = idx.duplicated()
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
expected = MultiIndex.from_arrays(([1, 2, 3, 2, 3], [1, 1, 1, 2, 2]))
tm.assert_index_equal(idx.drop_duplicates(), expected)
expected = np.array([True, False, False, False, False, False])
duplicated = idx.duplicated(keep="last")
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
expected = MultiIndex.from_arrays(([2, 3, 1, 2, 3], [1, 1, 1, 2, 2]))
tm.assert_index_equal(idx.drop_duplicates(keep="last"), expected)
expected = np.array([True, False, False, True, False, False])
duplicated = idx.duplicated(keep=False)
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
expected = MultiIndex.from_arrays(([2, 3, 2, 3], [1, 1, 2, 2]))
tm.assert_index_equal(idx.drop_duplicates(keep=False), expected)
def test_multiindex_set_index(self):
# segfault in #3308
d = {"t1": [2, 2.5, 3], "t2": [4, 5, 6]}
df = DataFrame(d)
tuples = [(0, 1), (0, 2), (1, 2)]
df["tuples"] = tuples
index = MultiIndex.from_tuples(df["tuples"])
# it works!
df.set_index(index)
def test_datetimeindex(self):
idx1 = pd.DatetimeIndex(
["2013-04-01 9:00", "2013-04-02 9:00", "2013-04-03 9:00"] * 2,
tz="Asia/Tokyo",
)
idx2 = pd.date_range("2010/01/01", periods=6, freq="M", tz="US/Eastern")
idx = MultiIndex.from_arrays([idx1, idx2])
expected1 = pd.DatetimeIndex(
["2013-04-01 9:00", "2013-04-02 9:00", "2013-04-03 9:00"], tz="Asia/Tokyo"
)
tm.assert_index_equal(idx.levels[0], expected1)
tm.assert_index_equal(idx.levels[1], idx2)
# from datetime combos
# GH 7888
date1 = datetime.date.today()
date2 = datetime.datetime.today()
date3 = Timestamp.today()
for d1, d2 in itertools.product([date1, date2, date3], [date1, date2, date3]):
index = MultiIndex.from_product([[d1], [d2]])
assert isinstance(index.levels[0], pd.DatetimeIndex)
assert isinstance(index.levels[1], pd.DatetimeIndex)
def test_constructor_with_tz(self):
index = pd.DatetimeIndex(
["2013/01/01 09:00", "2013/01/02 09:00"], name="dt1", tz="US/Pacific"
)
columns = pd.DatetimeIndex(
["2014/01/01 09:00", "2014/01/02 09:00"], name="dt2", tz="Asia/Tokyo"
)
result = MultiIndex.from_arrays([index, columns])
assert result.names == ["dt1", "dt2"]
tm.assert_index_equal(result.levels[0], index)
tm.assert_index_equal(result.levels[1], columns)
result = MultiIndex.from_arrays([Series(index), Series(columns)])
assert result.names == ["dt1", "dt2"]
tm.assert_index_equal(result.levels[0], index)
tm.assert_index_equal(result.levels[1], columns)
def test_set_index_datetime(self):
# GH 3950
df = DataFrame(
{
"label": ["a", "a", "a", "b", "b", "b"],
"datetime": [
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
],
"value": range(6),
}
)
df.index = pd.to_datetime(df.pop("datetime"), utc=True)
df.index = df.index.tz_convert("US/Pacific")
expected = pd.DatetimeIndex(
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
name="datetime",
)
expected = expected.tz_localize("UTC").tz_convert("US/Pacific")
df = df.set_index("label", append=True)
tm.assert_index_equal(df.index.levels[0], expected)
tm.assert_index_equal(df.index.levels[1], Index(["a", "b"], name="label"))
assert df.index.names == ["datetime", "label"]
df = df.swaplevel(0, 1)
tm.assert_index_equal(df.index.levels[0], Index(["a", "b"], name="label"))
tm.assert_index_equal(df.index.levels[1], expected)
assert df.index.names == ["label", "datetime"]
df = DataFrame(np.random.random(6))
idx1 = pd.DatetimeIndex(
[
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
],
tz="US/Eastern",
)
idx2 = pd.DatetimeIndex(
[
"2012-04-01 09:00",
"2012-04-01 09:00",
"2012-04-01 09:00",
"2012-04-02 09:00",
"2012-04-02 09:00",
"2012-04-02 09:00",
],
tz="US/Eastern",
)
idx3 = pd.date_range("2011-01-01 09:00", periods=6, tz="Asia/Tokyo")
df = df.set_index(idx1)
df = df.set_index(idx2, append=True)
df = df.set_index(idx3, append=True)
expected1 = pd.DatetimeIndex(
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
tz="US/Eastern",
)
expected2 = pd.DatetimeIndex(
["2012-04-01 09:00", "2012-04-02 09:00"], tz="US/Eastern"
)
tm.assert_index_equal(df.index.levels[0], expected1)
tm.assert_index_equal(df.index.levels[1], expected2)
tm.assert_index_equal(df.index.levels[2], idx3)
# GH 7092
tm.assert_index_equal(df.index.get_level_values(0), idx1)
tm.assert_index_equal(df.index.get_level_values(1), idx2)
tm.assert_index_equal(df.index.get_level_values(2), idx3)
def test_reset_index_datetime(self):
# GH 3950
for tz in ["UTC", "Asia/Tokyo", "US/Eastern"]:
idx1 = pd.date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx1")
idx2 = Index(range(5), name="idx2", dtype="int64")
idx = MultiIndex.from_arrays([idx1, idx2])
df = DataFrame(
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
index=idx,
)
expected = DataFrame(
{
"idx1": [
datetime.datetime(2011, 1, 1),
datetime.datetime(2011, 1, 2),
datetime.datetime(2011, 1, 3),
datetime.datetime(2011, 1, 4),
datetime.datetime(2011, 1, 5),
],
"idx2": np.arange(5, dtype="int64"),
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
tm.assert_frame_equal(df.reset_index(), expected)
idx3 = pd.date_range(
"1/1/2012", periods=5, freq="MS", tz="Europe/Paris", name="idx3"
)
idx = MultiIndex.from_arrays([idx1, idx2, idx3])
df = DataFrame(
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
index=idx,
)
expected = DataFrame(
{
"idx1": [
datetime.datetime(2011, 1, 1),
datetime.datetime(2011, 1, 2),
datetime.datetime(2011, 1, 3),
datetime.datetime(2011, 1, 4),
datetime.datetime(2011, 1, 5),
],
"idx2": np.arange(5, dtype="int64"),
"idx3": [
datetime.datetime(2012, 1, 1),
datetime.datetime(2012, 2, 1),
datetime.datetime(2012, 3, 1),
datetime.datetime(2012, 4, 1),
datetime.datetime(2012, 5, 1),
],
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "idx3", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
expected["idx3"] = expected["idx3"].apply(
lambda d: Timestamp(d, tz="Europe/Paris")
)
tm.assert_frame_equal(df.reset_index(), expected)
# GH 7793
idx = MultiIndex.from_product(
[["a", "b"], pd.date_range("20130101", periods=3, tz=tz)]
)
df = DataFrame(
np.arange(6, dtype="int64").reshape(6, 1), columns=["a"], index=idx
)
expected = DataFrame(
{
"level_0": "a a a b b b".split(),
"level_1": [
datetime.datetime(2013, 1, 1),
datetime.datetime(2013, 1, 2),
datetime.datetime(2013, 1, 3),
]
* 2,
"a": np.arange(6, dtype="int64"),
},
columns=["level_0", "level_1", "a"],
)
expected["level_1"] = expected["level_1"].apply(
lambda d: Timestamp(d, freq="D", tz=tz)
)
tm.assert_frame_equal(df.reset_index(), expected)
def test_reset_index_period(self):
# GH 7746
idx = MultiIndex.from_product(
[pd.period_range("20130101", periods=3, freq="M"), list("abc")],
names=["month", "feature"],
)
df = DataFrame(
np.arange(9, dtype="int64").reshape(-1, 1), index=idx, columns=["a"]
)
expected = DataFrame(
{
"month": (
[pd.Period("2013-01", freq="M")] * 3
+ [pd.Period("2013-02", freq="M")] * 3
+ [pd.Period("2013-03", freq="M")] * 3
),
"feature": ["a", "b", "c"] * 3,
"a": np.arange(9, dtype="int64"),
},
columns=["month", "feature", "a"],
)
tm.assert_frame_equal(df.reset_index(), expected)
def test_reset_index_multiindex_columns(self):
levels = [["A", ""], ["B", "b"]]
df = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
result = df[["B"]].rename_axis("A").reset_index()
tm.assert_frame_equal(result, df)
# gh-16120: already existing column
msg = r"cannot insert \('A', ''\), already exists"
with pytest.raises(ValueError, match=msg):
df.rename_axis("A").reset_index()
# gh-16164: multiindex (tuple) full key
result = df.set_index([("A", "")]).reset_index()
tm.assert_frame_equal(result, df)
# with additional (unnamed) index level
idx_col = DataFrame(
[[0], [1]], columns=MultiIndex.from_tuples([("level_0", "")])
)
expected = pd.concat([idx_col, df[[("B", "b"), ("A", "")]]], axis=1)
result = df.set_index([("B", "b")], append=True).reset_index()
tm.assert_frame_equal(result, expected)
# with index name which is a too long tuple...
msg = "Item must have length equal to number of levels."
with pytest.raises(ValueError, match=msg):
df.rename_axis([("C", "c", "i")]).reset_index()
# or too short...
levels = [["A", "a", ""], ["B", "b", "i"]]
df2 = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
idx_col = DataFrame(
[[0], [1]], columns=MultiIndex.from_tuples([("C", "c", "ii")])
)
expected = pd.concat([idx_col, df2], axis=1)
result = df2.rename_axis([("C", "c")]).reset_index(col_fill="ii")
tm.assert_frame_equal(result, expected)
# ... which is incompatible with col_fill=None
with pytest.raises(
ValueError,
match=(
"col_fill=None is incompatible with "
r"incomplete column name \('C', 'c'\)"
),
):
df2.rename_axis([("C", "c")]).reset_index(col_fill=None)
# with col_level != 0
result = df2.rename_axis([("c", "ii")]).reset_index(col_level=1, col_fill="C")
tm.assert_frame_equal(result, expected)
def test_set_index_period(self):
# GH 6631
df = DataFrame(np.random.random(6))
idx1 = pd.period_range("2011-01-01", periods=3, freq="M")
idx1 = idx1.append(idx1)
idx2 = pd.period_range("2013-01-01 09:00", periods=2, freq="H")
idx2 = idx2.append(idx2).append(idx2)
idx3 = pd.period_range("2005", periods=6, freq="A")
df = df.set_index(idx1)
df = df.set_index(idx2, append=True)
df = df.set_index(idx3, append=True)
expected1 = pd.period_range("2011-01-01", periods=3, freq="M")
expected2 = pd.period_range("2013-01-01 09:00", periods=2, freq="H")
tm.assert_index_equal(df.index.levels[0], expected1)
tm.assert_index_equal(df.index.levels[1], expected2)
tm.assert_index_equal(df.index.levels[2], idx3)
tm.assert_index_equal(df.index.get_level_values(0), idx1)
tm.assert_index_equal(df.index.get_level_values(1), idx2)
tm.assert_index_equal(df.index.get_level_values(2), idx3)
def test_repeat(self):
# GH 9361
# fixed by # GH 7891
m_idx = MultiIndex.from_tuples([(1, 2), (3, 4), (5, 6), (7, 8)])
data = ["a", "b", "c", "d"]
m_df = Series(data, index=m_idx)
assert m_df.repeat(3).shape == (3 * len(data),)
def test_subsets_multiindex_dtype(self):
# GH 20757
data = [["x", 1]]
columns = [("a", "b", np.nan), ("a", "c", 0.0)]
df = DataFrame(data, columns=pd.MultiIndex.from_tuples(columns))
expected = df.dtypes.a.b
result = df.a.b.dtypes
tm.assert_series_equal(result, expected)
class TestSorted(Base):
""" everything you wanted to test about sorting """
def test_sort_index_preserve_levels(self):
result = self.frame.sort_index()
assert result.index.names == self.frame.index.names
def test_sorting_repr_8017(self):
np.random.seed(0)
data = np.random.randn(3, 4)
for gen, extra in [
([1.0, 3.0, 2.0, 5.0], 4.0),
([1, 3, 2, 5], 4),
(
[
Timestamp("20130101"),
Timestamp("20130103"),
Timestamp("20130102"),
Timestamp("20130105"),
],
Timestamp("20130104"),
),
(["1one", "3one", "2one", "5one"], "4one"),
]:
columns = MultiIndex.from_tuples([("red", i) for i in gen])
df = DataFrame(data, index=list("def"), columns=columns)
df2 = pd.concat(
[
df,
DataFrame(
"world",
index=list("def"),
columns=MultiIndex.from_tuples([("red", extra)]),
),
],
axis=1,
)
# check that the repr is good
# make sure that we have a correct sparsified repr
# e.g. only 1 header of read
assert str(df2).splitlines()[0].split() == ["red"]
# GH 8017
# sorting fails after columns added
# construct single-dtype then sort
result = df.copy().sort_index(axis=1)
expected = df.iloc[:, [0, 2, 1, 3]]
tm.assert_frame_equal(result, expected)
result = df2.sort_index(axis=1)
expected = df2.iloc[:, [0, 2, 1, 4, 3]]
tm.assert_frame_equal(result, expected)
# setitem then sort
result = df.copy()
result[("red", extra)] = "world"
result = result.sort_index(axis=1)
tm.assert_frame_equal(result, expected)
def test_sort_index_level(self):
df = self.frame.copy()
df.index = np.arange(len(df))
# axis=1
# series
a_sorted = self.frame["A"].sort_index(level=0)
# preserve names
assert a_sorted.index.names == self.frame.index.names
# inplace
rs = self.frame.copy()
rs.sort_index(level=0, inplace=True)
tm.assert_frame_equal(rs, self.frame.sort_index(level=0))
def test_sort_index_level_large_cardinality(self):
# #2684 (int64)
index = MultiIndex.from_arrays([np.arange(4000)] * 3)
df = DataFrame(np.random.randn(4000), index=index, dtype=np.int64)
# it works!
result = df.sort_index(level=0)
assert result.index.lexsort_depth == 3
# #2684 (int32)
index = MultiIndex.from_arrays([np.arange(4000)] * 3)
df = DataFrame(np.random.randn(4000), index=index, dtype=np.int32)
# it works!
result = df.sort_index(level=0)
assert (result.dtypes.values == df.dtypes.values).all()
assert result.index.lexsort_depth == 3
def test_sort_index_level_by_name(self):
self.frame.index.names = ["first", "second"]
result = self.frame.sort_index(level="second")
expected = self.frame.sort_index(level=1)
tm.assert_frame_equal(result, expected)
def test_sort_index_level_mixed(self):
sorted_before = self.frame.sort_index(level=1)
df = self.frame.copy()
df["foo"] = "bar"
sorted_after = df.sort_index(level=1)
tm.assert_frame_equal(sorted_before, sorted_after.drop(["foo"], axis=1))
dft = self.frame.T
sorted_before = dft.sort_index(level=1, axis=1)
dft["foo", "three"] = "bar"
sorted_after = dft.sort_index(level=1, axis=1)
tm.assert_frame_equal(
sorted_before.drop([("foo", "three")], axis=1),
sorted_after.drop([("foo", "three")], axis=1),
)
def test_is_lexsorted(self):
levels = [[0, 1], [0, 1, 2]]
index = MultiIndex(
levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
)
assert index.is_lexsorted()
index = MultiIndex(
levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]
)
assert not index.is_lexsorted()
index = MultiIndex(
levels=levels, codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]
)
assert not index.is_lexsorted()
assert index.lexsort_depth == 0
def test_raise_invalid_sortorder(self):
# Test that the MultiIndex constructor raise when a incorrect sortorder is given
# Issue #28518
levels = [[0, 1], [0, 1, 2]]
# Correct sortorder
MultiIndex(
levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], sortorder=2
)
with pytest.raises(ValueError, match=r".* sortorder 2 with lexsort_depth 1.*"):
MultiIndex(
levels=levels,
codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]],
sortorder=2,
)
with pytest.raises(ValueError, match=r".* sortorder 1 with lexsort_depth 0.*"):
MultiIndex(
levels=levels,
codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]],
sortorder=1,
)
def test_lexsort_depth(self):
# Test that lexsort_depth return the correct sortorder
# when it was given to the MultiIndex const.
# Issue #28518
levels = [[0, 1], [0, 1, 2]]
index = MultiIndex(
levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], sortorder=2
)
assert index.lexsort_depth == 2
index = MultiIndex(
levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]], sortorder=1
)
assert index.lexsort_depth == 1
index = MultiIndex(
levels=levels, codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]], sortorder=0
)
assert index.lexsort_depth == 0
def test_sort_index_and_reconstruction(self):
# 15622
# lexsortedness should be identical
# across MultiIndex construction methods
df = DataFrame([[1, 1], [2, 2]], index=list("ab"))
expected = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_tuples(
[(0.5, "a"), (0.5, "b"), (0.8, "a"), (0.8, "b")]
),
)
assert expected.index.is_lexsorted()
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_product([[0.5, 0.8], list("ab")]),
)
result = result.sort_index()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex(
levels=[[0.5, 0.8], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]
),
)
result = result.sort_index()
assert result.index.is_lexsorted()
tm.assert_frame_equal(result, expected)
concatted = pd.concat([df, df], keys=[0.8, 0.5])
result = concatted.sort_index()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
# 14015
df = DataFrame(
[[1, 2], [6, 7]],
columns=MultiIndex.from_tuples(
[(0, "20160811 12:00:00"), (0, "20160809 12:00:00")],
names=["l1", "Date"],
),
)
df.columns.set_levels(
pd.to_datetime(df.columns.levels[1]), level=1, inplace=True
)
assert not df.columns.is_lexsorted()
assert not df.columns.is_monotonic
result = df.sort_index(axis=1)
assert result.columns.is_lexsorted()
assert result.columns.is_monotonic
result = df.sort_index(axis=1, level=1)
assert result.columns.is_lexsorted()
assert result.columns.is_monotonic
def test_sort_index_and_reconstruction_doc_example(self):
# doc example
df = DataFrame(
{"value": [1, 2, 3, 4]},
index=MultiIndex(
levels=[["a", "b"], ["bb", "aa"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]
),
)
assert df.index.is_lexsorted()
assert not df.index.is_monotonic
# sort it
expected = DataFrame(
{"value": [2, 1, 4, 3]},
index=MultiIndex(
levels=[["a", "b"], ["aa", "bb"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]
),
)
result = df.sort_index()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
# reconstruct
result = df.sort_index().copy()
result.index = result.index._sort_levels_monotonic()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
def test_sort_index_non_existent_label_multiindex(self):
# GH 12261
df = DataFrame(0, columns=[], index=pd.MultiIndex.from_product([[], []]))
df.loc["b", "2"] = 1
df.loc["a", "3"] = 1
result = df.sort_index().index.is_monotonic
assert result is True
def test_sort_index_reorder_on_ops(self):
# 15687
df = DataFrame(
np.random.randn(8, 2),
index=MultiIndex.from_product(
[["a", "b"], ["big", "small"], ["red", "blu"]],
names=["letter", "size", "color"],
),
columns=["near", "far"],
)
df = df.sort_index()
def my_func(group):
group.index = ["newz", "newa"]
return group
result = df.groupby(level=["letter", "size"]).apply(my_func).sort_index()
expected = MultiIndex.from_product(
[["a", "b"], ["big", "small"], ["newa", "newz"]],
names=["letter", "size", None],
)
tm.assert_index_equal(result.index, expected)
def test_sort_non_lexsorted(self):
# degenerate case where we sort but don't
# have a satisfying result :<
# GH 15797
idx = MultiIndex(
[["A", "B", "C"], ["c", "b", "a"]], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]]
)
df = DataFrame({"col": range(len(idx))}, index=idx, dtype="int64")
assert df.index.is_lexsorted() is False
assert df.index.is_monotonic is False
sorted = df.sort_index()
assert sorted.index.is_lexsorted() is True
assert sorted.index.is_monotonic is True
expected = DataFrame(
{"col": [1, 4, 5, 2]},
index=MultiIndex.from_tuples(
[("B", "a"), ("B", "c"), ("C", "a"), ("C", "b")]
),
dtype="int64",
)
result = sorted.loc[pd.IndexSlice["B":"C", "a":"c"], :]
tm.assert_frame_equal(result, expected)
def test_sort_index_nan(self):
# GH 14784
# incorrect sorting w.r.t. nans
tuples = [[12, 13], [np.nan, np.nan], [np.nan, 3], [1, 2]]
mi = MultiIndex.from_tuples(tuples)
df = DataFrame(np.arange(16).reshape(4, 4), index=mi, columns=list("ABCD"))
s = Series(np.arange(4), index=mi)
df2 = DataFrame(
{
"date": pd.to_datetime(
[
"20121002",
"20121007",
"20130130",
"20130202",
"20130305",
"20121002",
"20121207",
"20130130",
"20130202",
"20130305",
"20130202",
"20130305",
]
),
"user_id": [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5],
"whole_cost": [
1790,
np.nan,
280,
259,
np.nan,
623,
90,
312,
np.nan,
301,
359,
801,
],
"cost": [12, 15, 10, 24, 39, 1, 0, np.nan, 45, 34, 1, 12],
}
).set_index(["date", "user_id"])
# sorting frame, default nan position is last
result = df.sort_index()
expected = df.iloc[[3, 0, 2, 1], :]
tm.assert_frame_equal(result, expected)
# sorting frame, nan position last
result = df.sort_index(na_position="last")
expected = df.iloc[[3, 0, 2, 1], :]
tm.assert_frame_equal(result, expected)
# sorting frame, nan position first
result = df.sort_index(na_position="first")
expected = df.iloc[[1, 2, 3, 0], :]
tm.assert_frame_equal(result, expected)
# sorting frame with removed rows
result = df2.dropna().sort_index()
expected = df2.sort_index().dropna()
tm.assert_frame_equal(result, expected)
# sorting series, default nan position is last
result = s.sort_index()
expected = s.iloc[[3, 0, 2, 1]]
tm.assert_series_equal(result, expected)
# sorting series, nan position last
result = s.sort_index(na_position="last")
expected = s.iloc[[3, 0, 2, 1]]
tm.assert_series_equal(result, expected)
# sorting series, nan position first
result = s.sort_index(na_position="first")
expected = s.iloc[[1, 2, 3, 0]]
tm.assert_series_equal(result, expected)
def test_sort_ascending_list(self):
# GH: 16934
# Set up a Series with a three level MultiIndex
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
[4, 3, 2, 1, 4, 3, 2, 1],
]
tuples = zip(*arrays)
mi = MultiIndex.from_tuples(tuples, names=["first", "second", "third"])
s = Series(range(8), index=mi)
# Sort with boolean ascending
result = s.sort_index(level=["third", "first"], ascending=False)
expected = s.iloc[[4, 0, 5, 1, 6, 2, 7, 3]]
tm.assert_series_equal(result, expected)
# Sort with list of boolean ascending
result = s.sort_index(level=["third", "first"], ascending=[False, True])
expected = s.iloc[[0, 4, 1, 5, 2, 6, 3, 7]]
tm.assert_series_equal(result, expected)