LSR/env/lib/python3.6/site-packages/scipy/linalg/tests/test_lapack.py
2020-06-04 17:24:47 +02:00

1617 lines
58 KiB
Python

#
# Created by: Pearu Peterson, September 2002
#
from __future__ import division, print_function, absolute_import
import sys
import subprocess
import time
from functools import reduce
from numpy.testing import (assert_equal, assert_array_almost_equal, assert_,
assert_allclose, assert_almost_equal,
assert_array_equal)
import pytest
from pytest import raises as assert_raises
import numpy as np
from numpy import (eye, ones, zeros, zeros_like, triu, tril, tril_indices,
triu_indices)
from numpy.random import rand, randint, seed
from scipy.linalg import _flapack as flapack, lapack
from scipy.linalg import inv, svd, cholesky, solve, ldl, norm
from scipy.linalg.lapack import _compute_lwork
try:
from scipy.linalg import _clapack as clapack
except ImportError:
clapack = None
from scipy.linalg.lapack import get_lapack_funcs
from scipy.linalg.blas import get_blas_funcs
REAL_DTYPES = [np.float32, np.float64]
COMPLEX_DTYPES = [np.complex64, np.complex128]
DTYPES = REAL_DTYPES + COMPLEX_DTYPES
def test_lapack_documented():
"""Test that all entries are in the doc."""
if lapack.__doc__ is None: # just in case there is a python -OO
pytest.skip('lapack.__doc__ is None')
names = set(lapack.__doc__.split())
ignore_list = set([
'absolute_import', 'clapack', 'division', 'find_best_lapack_type',
'flapack', 'print_function',
])
missing = list()
for name in dir(lapack):
if (not name.startswith('_') and name not in ignore_list and
name not in names):
missing.append(name)
assert missing == [], 'Name(s) missing from lapack.__doc__ or ignore_list'
class TestFlapackSimple(object):
def test_gebal(self):
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
a1 = [[1, 0, 0, 3e-4],
[4, 0, 0, 2e-3],
[7, 1, 0, 0],
[0, 1, 0, 0]]
for p in 'sdzc':
f = getattr(flapack, p+'gebal', None)
if f is None:
continue
ba, lo, hi, pivscale, info = f(a)
assert_(not info, repr(info))
assert_array_almost_equal(ba, a)
assert_equal((lo, hi), (0, len(a[0])-1))
assert_array_almost_equal(pivscale, np.ones(len(a)))
ba, lo, hi, pivscale, info = f(a1, permute=1, scale=1)
assert_(not info, repr(info))
# print(a1)
# print(ba, lo, hi, pivscale)
def test_gehrd(self):
a = [[-149, -50, -154],
[537, 180, 546],
[-27, -9, -25]]
for p in 'd':
f = getattr(flapack, p+'gehrd', None)
if f is None:
continue
ht, tau, info = f(a)
assert_(not info, repr(info))
def test_trsyl(self):
a = np.array([[1, 2], [0, 4]])
b = np.array([[5, 6], [0, 8]])
c = np.array([[9, 10], [11, 12]])
trans = 'T'
# Test single and double implementations, including most
# of the options
for dtype in 'fdFD':
a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype)
trsyl, = get_lapack_funcs(('trsyl',), (a1,))
if dtype.isupper(): # is complex dtype
a1[0] += 1j
trans = 'C'
x, scale, info = trsyl(a1, b1, c1)
assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1),
scale * c1)
x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans)
assert_array_almost_equal(
np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T),
scale * c1, decimal=4)
x, scale, info = trsyl(a1, b1, c1, isgn=-1)
assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1),
scale * c1, decimal=4)
def test_lange(self):
a = np.array([
[-149, -50, -154],
[537, 180, 546],
[-27, -9, -25]])
for dtype in 'fdFD':
for norm_str in 'Mm1OoIiFfEe':
a1 = a.astype(dtype)
if dtype.isupper():
# is complex dtype
a1[0, 0] += 1j
lange, = get_lapack_funcs(('lange',), (a1,))
value = lange(norm_str, a1)
if norm_str in 'FfEe':
if dtype in 'Ff':
decimal = 3
else:
decimal = 7
ref = np.sqrt(np.sum(np.square(np.abs(a1))))
assert_almost_equal(value, ref, decimal)
else:
if norm_str in 'Mm':
ref = np.max(np.abs(a1))
elif norm_str in '1Oo':
ref = np.max(np.sum(np.abs(a1), axis=0))
elif norm_str in 'Ii':
ref = np.max(np.sum(np.abs(a1), axis=1))
assert_equal(value, ref)
class TestLapack(object):
def test_flapack(self):
if hasattr(flapack, 'empty_module'):
# flapack module is empty
pass
def test_clapack(self):
if hasattr(clapack, 'empty_module'):
# clapack module is empty
pass
class TestLeastSquaresSolvers(object):
def test_gels(self):
seed(1234)
# Test fat/tall matrix argument handling - gh-issue #8329
for ind, dtype in enumerate(DTYPES):
m = 10
n = 20
nrhs = 1
a1 = rand(m, n).astype(dtype)
b1 = rand(n).astype(dtype)
gls, glslw = get_lapack_funcs(('gels', 'gels_lwork'), dtype=dtype)
# Request of sizes
lwork = _compute_lwork(glslw, m, n, nrhs)
_, _, info = gls(a1, b1, lwork=lwork)
assert_(info >= 0)
_, _, info = gls(a1, b1, trans='TTCC'[ind], lwork=lwork)
assert_(info >= 0)
for dtype in REAL_DTYPES:
a1 = np.array([[1.0, 2.0],
[4.0, 5.0],
[7.0, 8.0]], dtype=dtype)
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
gels, gels_lwork, geqrf = get_lapack_funcs(
('gels', 'gels_lwork', 'geqrf'), (a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
lwork = _compute_lwork(gels_lwork, m, n, nrhs)
lqr, x, info = gels(a1, b1, lwork=lwork)
assert_allclose(x[:-1], np.array([-14.333333333333323,
14.999999999999991],
dtype=dtype),
rtol=25*np.finfo(dtype).eps)
lqr_truth, _, _, _ = geqrf(a1)
assert_array_equal(lqr, lqr_truth)
for dtype in COMPLEX_DTYPES:
a1 = np.array([[1.0+4.0j, 2.0],
[4.0+0.5j, 5.0-3.0j],
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
gels, gels_lwork, geqrf = get_lapack_funcs(
('gels', 'gels_lwork', 'geqrf'), (a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
lwork = _compute_lwork(gels_lwork, m, n, nrhs)
lqr, x, info = gels(a1, b1, lwork=lwork)
assert_allclose(x[:-1],
np.array([1.161753632288328-1.901075709391912j,
1.735882340522193+1.521240901196909j],
dtype=dtype), rtol=25*np.finfo(dtype).eps)
lqr_truth, _, _, _ = geqrf(a1)
assert_array_equal(lqr, lqr_truth)
def test_gelsd(self):
for dtype in REAL_DTYPES:
a1 = np.array([[1.0, 2.0],
[4.0, 5.0],
[7.0, 8.0]], dtype=dtype)
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
(a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
work, iwork, info = gelsd_lwork(m, n, nrhs, -1)
lwork = int(np.real(work))
iwork_size = iwork
x, s, rank, info = gelsd(a1, b1, lwork, iwork_size,
-1, False, False)
assert_allclose(x[:-1], np.array([-14.333333333333323,
14.999999999999991],
dtype=dtype),
rtol=25*np.finfo(dtype).eps)
assert_allclose(s, np.array([12.596017180511966,
0.583396253199685], dtype=dtype),
rtol=25*np.finfo(dtype).eps)
for dtype in COMPLEX_DTYPES:
a1 = np.array([[1.0+4.0j, 2.0],
[4.0+0.5j, 5.0-3.0j],
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
(a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
work, rwork, iwork, info = gelsd_lwork(m, n, nrhs, -1)
lwork = int(np.real(work))
rwork_size = int(rwork)
iwork_size = iwork
x, s, rank, info = gelsd(a1, b1, lwork, rwork_size, iwork_size,
-1, False, False)
assert_allclose(x[:-1],
np.array([1.161753632288328-1.901075709391912j,
1.735882340522193+1.521240901196909j],
dtype=dtype), rtol=25*np.finfo(dtype).eps)
assert_allclose(s,
np.array([13.035514762572043, 4.337666985231382],
dtype=dtype), rtol=25*np.finfo(dtype).eps)
def test_gelss(self):
for dtype in REAL_DTYPES:
a1 = np.array([[1.0, 2.0],
[4.0, 5.0],
[7.0, 8.0]], dtype=dtype)
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
(a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
work, info = gelss_lwork(m, n, nrhs, -1)
lwork = int(np.real(work))
v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
assert_allclose(x[:-1], np.array([-14.333333333333323,
14.999999999999991],
dtype=dtype),
rtol=25*np.finfo(dtype).eps)
assert_allclose(s, np.array([12.596017180511966,
0.583396253199685], dtype=dtype),
rtol=25*np.finfo(dtype).eps)
for dtype in COMPLEX_DTYPES:
a1 = np.array([[1.0+4.0j, 2.0],
[4.0+0.5j, 5.0-3.0j],
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
(a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
work, info = gelss_lwork(m, n, nrhs, -1)
lwork = int(np.real(work))
v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
assert_allclose(x[:-1],
np.array([1.161753632288328-1.901075709391912j,
1.735882340522193+1.521240901196909j],
dtype=dtype),
rtol=25*np.finfo(dtype).eps)
assert_allclose(s, np.array([13.035514762572043,
4.337666985231382], dtype=dtype),
rtol=25*np.finfo(dtype).eps)
def test_gelsy(self):
for dtype in REAL_DTYPES:
a1 = np.array([[1.0, 2.0],
[4.0, 5.0],
[7.0, 8.0]], dtype=dtype)
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
(a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
lwork = int(np.real(work))
jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
lwork, False, False)
assert_allclose(x[:-1], np.array([-14.333333333333323,
14.999999999999991],
dtype=dtype),
rtol=25*np.finfo(dtype).eps)
for dtype in COMPLEX_DTYPES:
a1 = np.array([[1.0+4.0j, 2.0],
[4.0+0.5j, 5.0-3.0j],
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
(a1, b1))
m, n = a1.shape
if len(b1.shape) == 2:
nrhs = b1.shape[1]
else:
nrhs = 1
# Request of sizes
work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
lwork = int(np.real(work))
jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
lwork, False, False)
assert_allclose(x[:-1],
np.array([1.161753632288328-1.901075709391912j,
1.735882340522193+1.521240901196909j],
dtype=dtype),
rtol=25*np.finfo(dtype).eps)
class TestRegression(object):
def test_ticket_1645(self):
# Check that RQ routines have correct lwork
for dtype in DTYPES:
a = np.zeros((300, 2), dtype=dtype)
gerqf, = get_lapack_funcs(['gerqf'], [a])
assert_raises(Exception, gerqf, a, lwork=2)
rq, tau, work, info = gerqf(a)
if dtype in REAL_DTYPES:
orgrq, = get_lapack_funcs(['orgrq'], [a])
assert_raises(Exception, orgrq, rq[-2:], tau, lwork=1)
orgrq(rq[-2:], tau, lwork=2)
elif dtype in COMPLEX_DTYPES:
ungrq, = get_lapack_funcs(['ungrq'], [a])
assert_raises(Exception, ungrq, rq[-2:], tau, lwork=1)
ungrq(rq[-2:], tau, lwork=2)
class TestDpotr(object):
def test_gh_2691(self):
# 'lower' argument of dportf/dpotri
for lower in [True, False]:
for clean in [True, False]:
np.random.seed(42)
x = np.random.normal(size=(3, 3))
a = x.dot(x.T)
dpotrf, dpotri = get_lapack_funcs(("potrf", "potri"), (a, ))
c, info = dpotrf(a, lower, clean=clean)
dpt = dpotri(c, lower)[0]
if lower:
assert_allclose(np.tril(dpt), np.tril(inv(a)))
else:
assert_allclose(np.triu(dpt), np.triu(inv(a)))
class TestDlasd4(object):
def test_sing_val_update(self):
sigmas = np.array([4., 3., 2., 0])
m_vec = np.array([3.12, 5.7, -4.8, -2.2])
M = np.hstack((np.vstack((np.diag(sigmas[0:-1]),
np.zeros((1, len(m_vec) - 1)))),
m_vec[:, np.newaxis]))
SM = svd(M, full_matrices=False, compute_uv=False, overwrite_a=False,
check_finite=False)
it_len = len(sigmas)
sgm = np.concatenate((sigmas[::-1], [sigmas[0] + it_len*norm(m_vec)]))
mvc = np.concatenate((m_vec[::-1], (0,)))
lasd4 = get_lapack_funcs('lasd4', (sigmas,))
roots = []
for i in range(0, it_len):
res = lasd4(i, sgm, mvc)
roots.append(res[1])
assert_((res[3] <= 0), "LAPACK root finding dlasd4 failed to find \
the singular value %i" % i)
roots = np.array(roots)[::-1]
assert_((not np.any(np.isnan(roots)), "There are NaN roots"))
assert_allclose(SM, roots, atol=100*np.finfo(np.float64).eps,
rtol=100*np.finfo(np.float64).eps)
def test_lartg():
for dtype in 'fdFD':
lartg = get_lapack_funcs('lartg', dtype=dtype)
f = np.array(3, dtype)
g = np.array(4, dtype)
if np.iscomplexobj(g):
g *= 1j
cs, sn, r = lartg(f, g)
assert_allclose(cs, 3.0/5.0)
assert_allclose(r, 5.0)
if np.iscomplexobj(g):
assert_allclose(sn, -4.0j/5.0)
assert_(type(r) == complex)
assert_(type(cs) == float)
else:
assert_allclose(sn, 4.0/5.0)
def test_rot():
# srot, drot from blas and crot and zrot from lapack.
for dtype in 'fdFD':
c = 0.6
s = 0.8
u = np.full(4, 3, dtype)
v = np.full(4, 4, dtype)
atol = 10**-(np.finfo(dtype).precision-1)
if dtype in 'fd':
rot = get_blas_funcs('rot', dtype=dtype)
f = 4
else:
rot = get_lapack_funcs('rot', dtype=dtype)
s *= -1j
v *= 1j
f = 4j
assert_allclose(rot(u, v, c, s), [[5, 5, 5, 5],
[0, 0, 0, 0]], atol=atol)
assert_allclose(rot(u, v, c, s, n=2), [[5, 5, 3, 3],
[0, 0, f, f]], atol=atol)
assert_allclose(rot(u, v, c, s, offx=2, offy=2),
[[3, 3, 5, 5], [f, f, 0, 0]], atol=atol)
assert_allclose(rot(u, v, c, s, incx=2, offy=2, n=2),
[[5, 3, 5, 3], [f, f, 0, 0]], atol=atol)
assert_allclose(rot(u, v, c, s, offx=2, incy=2, n=2),
[[3, 3, 5, 5], [0, f, 0, f]], atol=atol)
assert_allclose(rot(u, v, c, s, offx=2, incx=2, offy=2, incy=2, n=1),
[[3, 3, 5, 3], [f, f, 0, f]], atol=atol)
assert_allclose(rot(u, v, c, s, incx=-2, incy=-2, n=2),
[[5, 3, 5, 3], [0, f, 0, f]], atol=atol)
a, b = rot(u, v, c, s, overwrite_x=1, overwrite_y=1)
assert_(a is u)
assert_(b is v)
assert_allclose(a, [5, 5, 5, 5], atol=atol)
assert_allclose(b, [0, 0, 0, 0], atol=atol)
def test_larfg_larf():
np.random.seed(1234)
a0 = np.random.random((4, 4))
a0 = a0.T.dot(a0)
a0j = np.random.random((4, 4)) + 1j*np.random.random((4, 4))
a0j = a0j.T.conj().dot(a0j)
# our test here will be to do one step of reducing a hermetian matrix to
# tridiagonal form using householder transforms.
for dtype in 'fdFD':
larfg, larf = get_lapack_funcs(['larfg', 'larf'], dtype=dtype)
if dtype in 'FD':
a = a0j.copy()
else:
a = a0.copy()
# generate a householder transform to clear a[2:,0]
alpha, x, tau = larfg(a.shape[0]-1, a[1, 0], a[2:, 0])
# create expected output
expected = np.zeros_like(a[:, 0])
expected[0] = a[0, 0]
expected[1] = alpha
# assemble householder vector
v = np.zeros_like(a[1:, 0])
v[0] = 1.0
v[1:] = x
# apply transform from the left
a[1:, :] = larf(v, tau.conjugate(), a[1:, :], np.zeros(a.shape[1]))
# apply transform from the right
a[:, 1:] = larf(v, tau, a[:, 1:], np.zeros(a.shape[0]), side='R')
assert_allclose(a[:, 0], expected, atol=1e-5)
assert_allclose(a[0, :], expected, atol=1e-5)
@pytest.mark.xslow
def test_sgesdd_lwork_bug_workaround():
# Test that SGESDD lwork is sufficiently large for LAPACK.
#
# This checks that workaround around an apparent LAPACK bug
# actually works. cf. gh-5401
#
# xslow: requires 1GB+ of memory
p = subprocess.Popen([sys.executable, '-c',
'import numpy as np; '
'from scipy.linalg import svd; '
'a = np.zeros([9537, 9537], dtype=np.float32); '
'svd(a)'],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
# Check if it an error occurred within 5 sec; the computation can
# take substantially longer, and we will not wait for it to finish
for j in range(50):
time.sleep(0.1)
if p.poll() is not None:
returncode = p.returncode
break
else:
# Didn't exit in time -- probably entered computation. The
# error is raised before entering computation, so things are
# probably OK.
returncode = 0
p.terminate()
assert_equal(returncode, 0,
"Code apparently failed: " + p.stdout.read())
class TestSytrd(object):
def test_sytrd(self):
for dtype in REAL_DTYPES:
# Assert that a 0x0 matrix raises an error
A = np.zeros((0, 0), dtype=dtype)
sytrd, sytrd_lwork = \
get_lapack_funcs(('sytrd', 'sytrd_lwork'), (A,))
assert_raises(ValueError, sytrd, A)
# Tests for n = 1 currently fail with
# ```
# ValueError: failed to create intent(cache|hide)|optional array--
# must have defined dimensions but got (0,)
# ```
# This is a NumPy issue
# <https://github.com/numpy/numpy/issues/9617>.
# TODO Once the minimum NumPy version is past 1.14, test for n=1
# some upper triangular array
n = 3
A = np.zeros((n, n), dtype=dtype)
A[np.triu_indices_from(A)] = \
np.arange(1, n*(n+1)//2+1, dtype=dtype)
# query lwork
lwork, info = sytrd_lwork(n)
assert_equal(info, 0)
# check lower=1 behavior (shouldn't do much since the matrix is
# upper triangular)
data, d, e, tau, info = sytrd(A, lower=1, lwork=lwork)
assert_equal(info, 0)
assert_allclose(data, A, atol=5*np.finfo(dtype).eps, rtol=1.0)
assert_allclose(d, np.diag(A))
assert_allclose(e, 0.0)
assert_allclose(tau, 0.0)
# and now for the proper test (lower=0 is the default)
data, d, e, tau, info = sytrd(A, lwork=lwork)
assert_equal(info, 0)
# assert Q^T*A*Q = tridiag(e, d, e)
# build tridiagonal matrix
T = np.zeros_like(A, dtype=dtype)
k = np.arange(A.shape[0])
T[k, k] = d
k2 = np.arange(A.shape[0]-1)
T[k2+1, k2] = e
T[k2, k2+1] = e
# build Q
Q = np.eye(n, n, dtype=dtype)
for i in range(n-1):
v = np.zeros(n, dtype=dtype)
v[:i] = data[:i, i+1]
v[i] = 1.0
H = np.eye(n, n, dtype=dtype) - tau[i] * np.outer(v, v)
Q = np.dot(H, Q)
# Make matrix fully symmetric
i_lower = np.tril_indices(n, -1)
A[i_lower] = A.T[i_lower]
QTAQ = np.dot(Q.T, np.dot(A, Q))
# disable rtol here since some values in QTAQ and T are very close
# to 0.
assert_allclose(QTAQ, T, atol=5*np.finfo(dtype).eps, rtol=1.0)
class TestHetrd(object):
def test_hetrd(self):
for real_dtype, complex_dtype in zip(REAL_DTYPES, COMPLEX_DTYPES):
# Assert that a 0x0 matrix raises an error
A = np.zeros((0, 0), dtype=complex_dtype)
hetrd, hetrd_lwork = \
get_lapack_funcs(('hetrd', 'hetrd_lwork'), (A,))
assert_raises(ValueError, hetrd, A)
# Tests for n = 1 currently fail with
# ```
# ValueError: failed to create intent(cache|hide)|optional array--
# must have defined dimensions but got (0,)
# ```
# This is a NumPy issue
# <https://github.com/numpy/numpy/issues/9617>.
# TODO Once the minimum NumPy version is past 1.14, test for n=1
# some upper triangular array
n = 3
A = np.zeros((n, n), dtype=complex_dtype)
A[np.triu_indices_from(A)] = (
np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
+ 1j * np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
)
np.fill_diagonal(A, np.real(np.diag(A)))
# test query lwork
for x in [0, 1]:
_, info = hetrd_lwork(n, lower=x)
assert_equal(info, 0)
# lwork returns complex which segfaults hetrd call (gh-10388)
# use the safe and recommended option
lwork = _compute_lwork(hetrd_lwork, n)
# check lower=1 behavior (shouldn't do much since the matrix is
# upper triangular)
data, d, e, tau, info = hetrd(A, lower=1, lwork=lwork)
assert_equal(info, 0)
assert_allclose(data, A, atol=5*np.finfo(real_dtype).eps, rtol=1.0)
assert_allclose(d, np.real(np.diag(A)))
assert_allclose(e, 0.0)
assert_allclose(tau, 0.0)
# and now for the proper test (lower=0 is the default)
data, d, e, tau, info = hetrd(A, lwork=lwork)
assert_equal(info, 0)
# assert Q^T*A*Q = tridiag(e, d, e)
# build tridiagonal matrix
T = np.zeros_like(A, dtype=real_dtype)
k = np.arange(A.shape[0], dtype=int)
T[k, k] = d
k2 = np.arange(A.shape[0]-1, dtype=int)
T[k2+1, k2] = e
T[k2, k2+1] = e
# build Q
Q = np.eye(n, n, dtype=complex_dtype)
for i in range(n-1):
v = np.zeros(n, dtype=complex_dtype)
v[:i] = data[:i, i+1]
v[i] = 1.0
H = np.eye(n, n, dtype=complex_dtype) \
- tau[i] * np.outer(v, np.conj(v))
Q = np.dot(H, Q)
# Make matrix fully Hermetian
i_lower = np.tril_indices(n, -1)
A[i_lower] = np.conj(A.T[i_lower])
QHAQ = np.dot(np.conj(Q.T), np.dot(A, Q))
# disable rtol here since some values in QTAQ and T are very close
# to 0.
assert_allclose(
QHAQ, T, atol=10*np.finfo(real_dtype).eps, rtol=1.0
)
def test_gglse():
# Example data taken from NAG manual
for ind, dtype in enumerate(DTYPES):
# DTYPES = <s,d,c,z> gglse
func, func_lwork = get_lapack_funcs(('gglse', 'gglse_lwork'),
dtype=dtype)
lwork = _compute_lwork(func_lwork, m=6, n=4, p=2)
# For <s,d>gglse
if ind < 2:
a = np.array([[-0.57, -1.28, -0.39, 0.25],
[-1.93, 1.08, -0.31, -2.14],
[2.30, 0.24, 0.40, -0.35],
[-1.93, 0.64, -0.66, 0.08],
[0.15, 0.30, 0.15, -2.13],
[-0.02, 1.03, -1.43, 0.50]], dtype=dtype)
c = np.array([-1.50, -2.14, 1.23, -0.54, -1.68, 0.82], dtype=dtype)
d = np.array([0., 0.], dtype=dtype)
# For <s,d>gglse
else:
a = np.array([[0.96-0.81j, -0.03+0.96j, -0.91+2.06j, -0.05+0.41j],
[-0.98+1.98j, -1.20+0.19j, -0.66+0.42j, -0.81+0.56j],
[0.62-0.46j, 1.01+0.02j, 0.63-0.17j, -1.11+0.60j],
[0.37+0.38j, 0.19-0.54j, -0.98-0.36j, 0.22-0.20j],
[0.83+0.51j, 0.20+0.01j, -0.17-0.46j, 1.47+1.59j],
[1.08-0.28j, 0.20-0.12j, -0.07+1.23j, 0.26+0.26j]])
c = np.array([[-2.54+0.09j],
[1.65-2.26j],
[-2.11-3.96j],
[1.82+3.30j],
[-6.41+3.77j],
[2.07+0.66j]])
d = np.zeros(2, dtype=dtype)
b = np.array([[1., 0., -1., 0.], [0., 1., 0., -1.]], dtype=dtype)
_, _, _, result, _ = func(a, b, c, d, lwork=lwork)
if ind < 2:
expected = np.array([0.48904455,
0.99754786,
0.48904455,
0.99754786])
else:
expected = np.array([1.08742917-1.96205783j,
-0.74093902+3.72973919j,
1.08742917-1.96205759j,
-0.74093896+3.72973895j])
assert_array_almost_equal(result, expected, decimal=4)
def test_sycon_hecon():
seed(1234)
for ind, dtype in enumerate(DTYPES+COMPLEX_DTYPES):
# DTYPES + COMPLEX DTYPES = <s,d,c,z> sycon + <c,z>hecon
n = 10
# For <s,d,c,z>sycon
if ind < 4:
func_lwork = get_lapack_funcs('sytrf_lwork', dtype=dtype)
funcon, functrf = get_lapack_funcs(('sycon', 'sytrf'), dtype=dtype)
A = (rand(n, n)).astype(dtype)
# For <c,z>hecon
else:
func_lwork = get_lapack_funcs('hetrf_lwork', dtype=dtype)
funcon, functrf = get_lapack_funcs(('hecon', 'hetrf'), dtype=dtype)
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
# Since sycon only refers to upper/lower part, conj() is safe here.
A = (A + A.conj().T)/2 + 2*np.eye(n, dtype=dtype)
anorm = norm(A, 1)
lwork = _compute_lwork(func_lwork, n)
ldu, ipiv, _ = functrf(A, lwork=lwork, lower=1)
rcond, _ = funcon(a=ldu, ipiv=ipiv, anorm=anorm, lower=1)
# The error is at most 1-fold
assert_(abs(1/rcond - np.linalg.cond(A, p=1))*rcond < 1)
def test_sygst():
seed(1234)
for ind, dtype in enumerate(REAL_DTYPES):
# DTYPES = <s,d> sygst
n = 10
potrf, sygst, syevd, sygvd = get_lapack_funcs(('potrf', 'sygst',
'syevd', 'sygvd'),
dtype=dtype)
A = rand(n, n).astype(dtype)
A = (A + A.T)/2
# B must be positive definite
B = rand(n, n).astype(dtype)
B = (B + B.T)/2 + 2 * np.eye(n, dtype=dtype)
# Perform eig (sygvd)
_, eig_gvd, info = sygvd(A, B)
assert_(info == 0)
# Convert to std problem potrf
b, info = potrf(B)
assert_(info == 0)
a, info = sygst(A, b)
assert_(info == 0)
eig, _, info = syevd(a)
assert_(info == 0)
assert_allclose(eig, eig_gvd, rtol=1e-4)
def test_hegst():
seed(1234)
for ind, dtype in enumerate(COMPLEX_DTYPES):
# DTYPES = <c,z> hegst
n = 10
potrf, hegst, heevd, hegvd = get_lapack_funcs(('potrf', 'hegst',
'heevd', 'hegvd'),
dtype=dtype)
A = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
A = (A + A.conj().T)/2
# B must be positive definite
B = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
B = (B + B.conj().T)/2 + 2 * np.eye(n, dtype=dtype)
# Perform eig (hegvd)
_, eig_gvd, info = hegvd(A, B)
assert_(info == 0)
# Convert to std problem potrf
b, info = potrf(B)
assert_(info == 0)
a, info = hegst(A, b)
assert_(info == 0)
eig, _, info = heevd(a)
assert_(info == 0)
assert_allclose(eig, eig_gvd, rtol=1e-4)
def test_tzrzf():
"""
This test performs an RZ decomposition in which an m x n upper trapezoidal
array M (m <= n) is factorized as M = [R 0] * Z where R is upper triangular
and Z is unitary.
"""
seed(1234)
m, n = 10, 15
for ind, dtype in enumerate(DTYPES):
tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
dtype=dtype)
lwork = _compute_lwork(tzrzf_lw, m, n)
if ind < 2:
A = triu(rand(m, n).astype(dtype))
else:
A = triu((rand(m, n) + rand(m, n)*1j).astype(dtype))
# assert wrong shape arg, f2py returns generic error
assert_raises(Exception, tzrzf, A.T)
rz, tau, info = tzrzf(A, lwork=lwork)
# Check success
assert_(info == 0)
# Get Z manually for comparison
R = np.hstack((rz[:, :m], np.zeros((m, n-m), dtype=dtype)))
V = np.hstack((np.eye(m, dtype=dtype), rz[:, m:]))
Id = np.eye(n, dtype=dtype)
ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(m)]
Z = reduce(np.dot, ref)
assert_allclose(R.dot(Z) - A, zeros_like(A, dtype=dtype),
atol=10*np.spacing(dtype(1.0).real), rtol=0.)
def test_tfsm():
"""
Test for solving a linear system with the coefficient matrix is a
triangular array stored in Full Packed (RFP) format.
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A = triu(rand(n, n) + rand(n, n)*1j + eye(n)).astype(dtype)
trans = 'C'
else:
A = triu(rand(n, n) + eye(n)).astype(dtype)
trans = 'T'
trttf, tfttr, tfsm = get_lapack_funcs(('trttf', 'tfttr', 'tfsm'),
dtype=dtype)
Afp, _ = trttf(A)
B = rand(n, 2).astype(dtype)
soln = tfsm(-1, Afp, B)
assert_array_almost_equal(soln, solve(-A, B),
decimal=4 if ind % 2 == 0 else 6)
soln = tfsm(-1, Afp, B, trans=trans)
assert_array_almost_equal(soln, solve(-A.conj().T, B),
decimal=4 if ind % 2 == 0 else 6)
# Make A, unit diagonal
A[np.arange(n), np.arange(n)] = dtype(1.)
soln = tfsm(-1, Afp, B, trans=trans, diag='U')
assert_array_almost_equal(soln, solve(-A.conj().T, B),
decimal=4 if ind % 2 == 0 else 6)
# Change side
B2 = rand(3, n).astype(dtype)
soln = tfsm(-1, Afp, B2, trans=trans, diag='U', side='R')
assert_array_almost_equal(soln, solve(-A, B2.T).conj().T,
decimal=4 if ind % 2 == 0 else 6)
def test_ormrz_unmrz():
"""
This test performs a matrix multiplication with an arbitrary m x n matric C
and a unitary matrix Q without explicitly forming the array. The array data
is encoded in the rectangular part of A which is obtained from ?TZRZF. Q
size is inferred by m, n, side keywords.
"""
seed(1234)
qm, qn, cn = 10, 15, 15
for ind, dtype in enumerate(DTYPES):
tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
dtype=dtype)
lwork_rz = _compute_lwork(tzrzf_lw, qm, qn)
if ind < 2:
A = triu(rand(qm, qn).astype(dtype))
C = rand(cn, cn).astype(dtype)
orun_mrz, orun_mrz_lw = get_lapack_funcs(('ormrz', 'ormrz_lwork'),
dtype=dtype)
else:
A = triu((rand(qm, qn) + rand(qm, qn)*1j).astype(dtype))
C = (rand(cn, cn) + rand(cn, cn)*1j).astype(dtype)
orun_mrz, orun_mrz_lw = get_lapack_funcs(('unmrz', 'unmrz_lwork'),
dtype=dtype)
lwork_mrz = _compute_lwork(orun_mrz_lw, cn, cn)
rz, tau, info = tzrzf(A, lwork=lwork_rz)
# Get Q manually for comparison
V = np.hstack((np.eye(qm, dtype=dtype), rz[:, qm:]))
Id = np.eye(qn, dtype=dtype)
ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(qm)]
Q = reduce(np.dot, ref)
# Now that we have Q, we can test whether lapack results agree with
# each case of CQ, CQ^H, QC, and QC^H
trans = 'T' if ind < 2 else 'C'
tol = 10*np.spacing(dtype(1.0).real)
cq, info = orun_mrz(rz, tau, C, lwork=lwork_mrz)
assert_(info == 0)
assert_allclose(cq - Q.dot(C), zeros_like(C), atol=tol, rtol=0.)
cq, info = orun_mrz(rz, tau, C, trans=trans, lwork=lwork_mrz)
assert_(info == 0)
assert_allclose(cq - Q.conj().T.dot(C), zeros_like(C), atol=tol,
rtol=0.)
cq, info = orun_mrz(rz, tau, C, side='R', lwork=lwork_mrz)
assert_(info == 0)
assert_allclose(cq - C.dot(Q), zeros_like(C), atol=tol, rtol=0.)
cq, info = orun_mrz(rz, tau, C, side='R', trans=trans, lwork=lwork_mrz)
assert_(info == 0)
assert_allclose(cq - C.dot(Q.conj().T), zeros_like(C), atol=tol,
rtol=0.)
def test_tfttr_trttf():
"""
Test conversion routines between the Rectengular Full Packed (RFP) format
and Standard Triangular Array (TR)
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
transr = 'C'
else:
A_full = (rand(n, n)).astype(dtype)
transr = 'T'
trttf, tfttr = get_lapack_funcs(('trttf', 'tfttr'), dtype=dtype)
A_tf_U, info = trttf(A_full)
assert_(info == 0)
A_tf_L, info = trttf(A_full, uplo='L')
assert_(info == 0)
A_tf_U_T, info = trttf(A_full, transr=transr, uplo='U')
assert_(info == 0)
A_tf_L_T, info = trttf(A_full, transr=transr, uplo='L')
assert_(info == 0)
# Create the RFP array manually (n is even!)
A_tf_U_m = zeros((n+1, n//2), dtype=dtype)
A_tf_U_m[:-1, :] = triu(A_full)[:, n//2:]
A_tf_U_m[n//2+1:, :] += triu(A_full)[:n//2, :n//2].conj().T
A_tf_L_m = zeros((n+1, n//2), dtype=dtype)
A_tf_L_m[1:, :] = tril(A_full)[:, :n//2]
A_tf_L_m[:n//2, :] += tril(A_full)[n//2:, n//2:].conj().T
assert_array_almost_equal(A_tf_U, A_tf_U_m.reshape(-1, order='F'))
assert_array_almost_equal(A_tf_U_T,
A_tf_U_m.conj().T.reshape(-1, order='F'))
assert_array_almost_equal(A_tf_L, A_tf_L_m.reshape(-1, order='F'))
assert_array_almost_equal(A_tf_L_T,
A_tf_L_m.conj().T.reshape(-1, order='F'))
# Get the original array from RFP
A_tr_U, info = tfttr(n, A_tf_U)
assert_(info == 0)
A_tr_L, info = tfttr(n, A_tf_L, uplo='L')
assert_(info == 0)
A_tr_U_T, info = tfttr(n, A_tf_U_T, transr=transr, uplo='U')
assert_(info == 0)
A_tr_L_T, info = tfttr(n, A_tf_L_T, transr=transr, uplo='L')
assert_(info == 0)
assert_array_almost_equal(A_tr_U, triu(A_full))
assert_array_almost_equal(A_tr_U_T, triu(A_full))
assert_array_almost_equal(A_tr_L, tril(A_full))
assert_array_almost_equal(A_tr_L_T, tril(A_full))
def test_tpttr_trttp():
"""
Test conversion routines between the Rectengular Full Packed (RFP) format
and Standard Triangular Array (TR)
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
else:
A_full = (rand(n, n)).astype(dtype)
trttp, tpttr = get_lapack_funcs(('trttp', 'tpttr'), dtype=dtype)
A_tp_U, info = trttp(A_full)
assert_(info == 0)
A_tp_L, info = trttp(A_full, uplo='L')
assert_(info == 0)
# Create the TP array manually
inds = tril_indices(n)
A_tp_U_m = zeros(n*(n+1)//2, dtype=dtype)
A_tp_U_m[:] = (triu(A_full).T)[inds]
inds = triu_indices(n)
A_tp_L_m = zeros(n*(n+1)//2, dtype=dtype)
A_tp_L_m[:] = (tril(A_full).T)[inds]
assert_array_almost_equal(A_tp_U, A_tp_U_m)
assert_array_almost_equal(A_tp_L, A_tp_L_m)
# Get the original array from TP
A_tr_U, info = tpttr(n, A_tp_U)
assert_(info == 0)
A_tr_L, info = tpttr(n, A_tp_L, uplo='L')
assert_(info == 0)
assert_array_almost_equal(A_tr_U, triu(A_full))
assert_array_almost_equal(A_tr_L, tril(A_full))
def test_pftrf():
"""
Test Cholesky factorization of a positive definite Rectengular Full
Packed (RFP) format array
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
A = A + A.conj().T + n*eye(n)
else:
A = (rand(n, n)).astype(dtype)
A = A + A.T + n*eye(n)
pftrf, trttf, tfttr = get_lapack_funcs(('pftrf', 'trttf', 'tfttr'),
dtype=dtype)
# Get the original array from TP
Afp, info = trttf(A)
Achol_rfp, info = pftrf(n, Afp)
assert_(info == 0)
A_chol_r, _ = tfttr(n, Achol_rfp)
Achol = cholesky(A)
assert_array_almost_equal(A_chol_r, Achol)
def test_pftri():
"""
Test Cholesky factorization of a positive definite Rectengular Full
Packed (RFP) format array to find its inverse
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
A = A + A.conj().T + n*eye(n)
else:
A = (rand(n, n)).astype(dtype)
A = A + A.T + n*eye(n)
pftri, pftrf, trttf, tfttr = get_lapack_funcs(('pftri',
'pftrf',
'trttf',
'tfttr'),
dtype=dtype)
# Get the original array from TP
Afp, info = trttf(A)
A_chol_rfp, info = pftrf(n, Afp)
A_inv_rfp, info = pftri(n, A_chol_rfp)
assert_(info == 0)
A_inv_r, _ = tfttr(n, A_inv_rfp)
Ainv = inv(A)
assert_array_almost_equal(A_inv_r, triu(Ainv),
decimal=4 if ind % 2 == 0 else 6)
def test_pftrs():
"""
Test Cholesky factorization of a positive definite Rectengular Full
Packed (RFP) format array and solve a linear system
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
A = A + A.conj().T + n*eye(n)
else:
A = (rand(n, n)).astype(dtype)
A = A + A.T + n*eye(n)
B = ones((n, 3), dtype=dtype)
Bf1 = ones((n+2, 3), dtype=dtype)
Bf2 = ones((n-2, 3), dtype=dtype)
pftrs, pftrf, trttf, tfttr = get_lapack_funcs(('pftrs',
'pftrf',
'trttf',
'tfttr'),
dtype=dtype)
# Get the original array from TP
Afp, info = trttf(A)
A_chol_rfp, info = pftrf(n, Afp)
# larger B arrays shouldn't segfault
soln, info = pftrs(n, A_chol_rfp, Bf1)
assert_(info == 0)
assert_raises(Exception, pftrs, n, A_chol_rfp, Bf2)
soln, info = pftrs(n, A_chol_rfp, B)
assert_(info == 0)
assert_array_almost_equal(solve(A, B), soln,
decimal=4 if ind % 2 == 0 else 6)
def test_sfrk_hfrk():
"""
Test for performing a symmetric rank-k operation for matrix in RFP format.
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
A = A + A.conj().T + n*eye(n)
else:
A = (rand(n, n)).astype(dtype)
A = A + A.T + n*eye(n)
prefix = 's'if ind < 2 else 'h'
trttf, tfttr, shfrk = get_lapack_funcs(('trttf', 'tfttr', '{}frk'
''.format(prefix)),
dtype=dtype)
Afp, _ = trttf(A)
C = np.random.rand(n, 2).astype(dtype)
Afp_out = shfrk(n, 2, -1, C, 2, Afp)
A_out, _ = tfttr(n, Afp_out)
assert_array_almost_equal(A_out, triu(-C.dot(C.conj().T) + 2*A),
decimal=4 if ind % 2 == 0 else 6)
def test_syconv():
"""
Test for going back and forth between the returned format of he/sytrf to
L and D factors/permutations.
"""
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 10
if ind > 1:
A = (randint(-30, 30, (n, n)) +
randint(-30, 30, (n, n))*1j).astype(dtype)
A = A + A.conj().T
else:
A = randint(-30, 30, (n, n)).astype(dtype)
A = A + A.T + n*eye(n)
tol = 100*np.spacing(dtype(1.0).real)
syconv, trf, trf_lwork = get_lapack_funcs(('syconv', 'sytrf',
'sytrf_lwork'), dtype=dtype)
lw = _compute_lwork(trf_lwork, n, lower=1)
L, D, perm = ldl(A, lower=1, hermitian=False)
lw = _compute_lwork(trf_lwork, n, lower=1)
ldu, ipiv, info = trf(A, lower=1, lwork=lw)
a, e, info = syconv(ldu, ipiv, lower=1)
assert_allclose(tril(a, -1,), tril(L[perm, :], -1), atol=tol, rtol=0.)
# Test also upper
U, D, perm = ldl(A, lower=0, hermitian=False)
ldu, ipiv, info = trf(A, lower=0)
a, e, info = syconv(ldu, ipiv, lower=0)
assert_allclose(triu(a, 1), triu(U[perm, :], 1), atol=tol, rtol=0.)
class TestBlockedQR(object):
"""
Tests for the blocked QR factorization, namely through geqrt, gemqrt, tpqrt
and tpmqr.
"""
def test_geqrt_gemqrt(self):
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
else:
A = (rand(n, n)).astype(dtype)
tol = 100*np.spacing(dtype(1.0).real)
geqrt, gemqrt = get_lapack_funcs(('geqrt', 'gemqrt'), dtype=dtype)
a, t, info = geqrt(n, A)
assert(info == 0)
# Extract elementary reflectors from lower triangle, adding the
# main diagonal of ones.
v = np.tril(a, -1) + np.eye(n, dtype=dtype)
# Generate the block Householder transform I - VTV^H
Q = np.eye(n, dtype=dtype) - v @ t @ v.T.conj()
R = np.triu(a)
# Test columns of Q are orthogonal
assert_allclose(Q.T.conj() @ Q, np.eye(n, dtype=dtype), atol=tol,
rtol=0.)
assert_allclose(Q @ R, A, atol=tol, rtol=0.)
if ind > 1:
C = (rand(n, n) + rand(n, n)*1j).astype(dtype)
transpose = 'C'
else:
C = (rand(n, n)).astype(dtype)
transpose = 'T'
for side in ('L', 'R'):
for trans in ('N', transpose):
c, info = gemqrt(a, t, C, side=side, trans=trans)
assert(info == 0)
if trans == transpose:
q = Q.T.conj()
else:
q = Q
if side == 'L':
qC = q @ C
else:
qC = C @ q
assert_allclose(c, qC, atol=tol, rtol=0.)
# Test default arguments
if (side, trans) == ('L', 'N'):
c_default, info = gemqrt(a, t, C)
assert(info == 0)
assert_equal(c_default, c)
# Test invalid side/trans
assert_raises(Exception, gemqrt, a, t, C, side='A')
assert_raises(Exception, gemqrt, a, t, C, trans='A')
def test_tpqrt_tpmqrt(self):
seed(1234)
for ind, dtype in enumerate(DTYPES):
n = 20
if ind > 1:
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
B = (rand(n, n) + rand(n, n)*1j).astype(dtype)
else:
A = (rand(n, n)).astype(dtype)
B = (rand(n, n)).astype(dtype)
tol = 100*np.spacing(dtype(1.0).real)
tpqrt, tpmqrt = get_lapack_funcs(('tpqrt', 'tpmqrt'), dtype=dtype)
# Test for the range of pentagonal B, from square to upper
# triangular
for l in (0, n // 2, n):
a, b, t, info = tpqrt(l, n, A, B)
assert(info == 0)
# Check that lower triangular part of A has not been modified
assert_equal(np.tril(a, -1), np.tril(A, -1))
# Check that elements not part of the pentagonal portion of B
# have not been modified.
assert_equal(np.tril(b, l - n - 1), np.tril(B, l - n - 1))
# Extract pentagonal portion of B
B_pent, b_pent = np.triu(B, l - n), np.triu(b, l - n)
# Generate elementary reflectors
v = np.concatenate((np.eye(n, dtype=dtype), b_pent))
# Generate the block Householder transform I - VTV^H
Q = np.eye(2 * n, dtype=dtype) - v @ t @ v.T.conj()
R = np.concatenate((np.triu(a), np.zeros_like(a)))
# Test columns of Q are orthogonal
assert_allclose(Q.T.conj() @ Q, np.eye(2 * n, dtype=dtype),
atol=tol, rtol=0.)
assert_allclose(Q @ R, np.concatenate((np.triu(A), B_pent)),
atol=tol, rtol=0.)
if ind > 1:
C = (rand(n, n) + rand(n, n)*1j).astype(dtype)
D = (rand(n, n) + rand(n, n)*1j).astype(dtype)
transpose = 'C'
else:
C = (rand(n, n)).astype(dtype)
D = (rand(n, n)).astype(dtype)
transpose = 'T'
for side in ('L', 'R'):
for trans in ('N', transpose):
c, d, info = tpmqrt(l, b, t, C, D, side=side,
trans=trans)
assert(info == 0)
if trans == transpose:
q = Q.T.conj()
else:
q = Q
if side == 'L':
cd = np.concatenate((c, d), axis=0)
CD = np.concatenate((C, D), axis=0)
qCD = q @ CD
else:
cd = np.concatenate((c, d), axis=1)
CD = np.concatenate((C, D), axis=1)
qCD = CD @ q
assert_allclose(cd, qCD, atol=tol, rtol=0.)
if (side, trans) == ('L', 'N'):
c_default, d_default, info = tpmqrt(l, b, t, C, D)
assert(info == 0)
assert_equal(c_default, c)
assert_equal(d_default, d)
# Test invalid side/trans
assert_raises(Exception, tpmqrt, l, b, t, C, D, side='A')
assert_raises(Exception, tpmqrt, l, b, t, C, D, trans='A')
def test_pstrf():
seed(1234)
for ind, dtype in enumerate(DTYPES):
# DTYPES = <s, d, c, z> pstrf
n = 10
r = 2
pstrf = get_lapack_funcs('pstrf', dtype=dtype)
# Create positive semidefinite A
if ind > 1:
A = rand(n, n-r).astype(dtype) + 1j * rand(n, n-r).astype(dtype)
A = A @ A.conj().T
else:
A = rand(n, n-r).astype(dtype)
A = A @ A.T
c, piv, r_c, info = pstrf(A)
U = triu(c)
U[r_c - n:, r_c - n:] = 0.
assert_equal(info, 1)
# python-dbg 3.5.2 runs cause trouble with the following assertion.
# assert_equal(r_c, n - r)
single_atol = 1000 * np.finfo(np.float32).eps
double_atol = 1000 * np.finfo(np.float64).eps
atol = single_atol if ind in [0, 2] else double_atol
assert_allclose(A[piv-1][:, piv-1], U.conj().T @ U, rtol=0., atol=atol)
c, piv, r_c, info = pstrf(A, lower=1)
L = tril(c)
L[r_c - n:, r_c - n:] = 0.
assert_equal(info, 1)
# assert_equal(r_c, n - r)
single_atol = 1000 * np.finfo(np.float32).eps
double_atol = 1000 * np.finfo(np.float64).eps
atol = single_atol if ind in [0, 2] else double_atol
assert_allclose(A[piv-1][:, piv-1], L @ L.conj().T, rtol=0., atol=atol)
def test_pstf2():
seed(1234)
for ind, dtype in enumerate(DTYPES):
# DTYPES = <s, d, c, z> pstf2
n = 10
r = 2
pstf2 = get_lapack_funcs('pstf2', dtype=dtype)
# Create positive semidefinite A
if ind > 1:
A = rand(n, n-r).astype(dtype) + 1j * rand(n, n-r).astype(dtype)
A = A @ A.conj().T
else:
A = rand(n, n-r).astype(dtype)
A = A @ A.T
c, piv, r_c, info = pstf2(A)
U = triu(c)
U[r_c - n:, r_c - n:] = 0.
assert_equal(info, 1)
# python-dbg 3.5.2 runs cause trouble with the commented assertions.
# assert_equal(r_c, n - r)
single_atol = 1000 * np.finfo(np.float32).eps
double_atol = 1000 * np.finfo(np.float64).eps
atol = single_atol if ind in [0, 2] else double_atol
assert_allclose(A[piv-1][:, piv-1], U.conj().T @ U, rtol=0., atol=atol)
c, piv, r_c, info = pstf2(A, lower=1)
L = tril(c)
L[r_c - n:, r_c - n:] = 0.
assert_equal(info, 1)
# assert_equal(r_c, n - r)
single_atol = 1000 * np.finfo(np.float32).eps
double_atol = 1000 * np.finfo(np.float64).eps
atol = single_atol if ind in [0, 2] else double_atol
assert_allclose(A[piv-1][:, piv-1], L @ L.conj().T, rtol=0., atol=atol)
def test_geequ():
desired_real = np.array([[0.6250, 1.0000, 0.0393, -0.4269],
[1.0000, -0.5619, -1.0000, -1.0000],
[0.5874, -1.0000, -0.0596, -0.5341],
[-1.0000, -0.5946, -0.0294, 0.9957]])
desired_cplx = np.array([[-0.2816+0.5359*1j,
0.0812+0.9188*1j,
-0.7439-0.2561*1j],
[-0.3562-0.2954*1j,
0.9566-0.0434*1j,
-0.0174+0.1555*1j],
[0.8607+0.1393*1j,
-0.2759+0.7241*1j,
-0.1642-0.1365*1j]])
for ind, dtype in enumerate(DTYPES):
if ind < 2:
# Use examples from the NAG documentation
A = np.array([[1.80e+10, 2.88e+10, 2.05e+00, -8.90e+09],
[5.25e+00, -2.95e+00, -9.50e-09, -3.80e+00],
[1.58e+00, -2.69e+00, -2.90e-10, -1.04e+00],
[-1.11e+00, -6.60e-01, -5.90e-11, 8.00e-01]])
A = A.astype(dtype)
else:
A = np.array([[-1.34e+00, 0.28e+10, -6.39e+00],
[-1.70e+00, 3.31e+10, -0.15e+00],
[2.41e-10, -0.56e+00, -0.83e-10]], dtype=dtype)
A += np.array([[2.55e+00, 3.17e+10, -2.20e+00],
[-1.41e+00, -0.15e+10, 1.34e+00],
[0.39e-10, 1.47e+00, -0.69e-10]])*1j
A = A.astype(dtype)
geequ = get_lapack_funcs('geequ', dtype=dtype)
r, c, rowcnd, colcnd, amax, info = geequ(A)
if ind < 2:
assert_allclose(desired_real.astype(dtype), r[:, None]*A*c,
rtol=0, atol=1e-4)
else:
assert_allclose(desired_cplx.astype(dtype), r[:, None]*A*c,
rtol=0, atol=1e-4)
def test_syequb():
desired_log2s = np.array([0, 0, 0, 0, 0, 0, -1, -1, -2, -3])
for ind, dtype in enumerate(DTYPES):
A = np.eye(10, dtype=dtype)
alpha = dtype(1. if ind < 2 else 1.j)
d = np.array([alpha * 2.**x for x in range(-5, 5)], dtype=dtype)
A += np.rot90(np.diag(d))
syequb = get_lapack_funcs('syequb', dtype=dtype)
s, scond, amax, info = syequb(A)
assert_equal(np.log2(s).astype(int), desired_log2s)
def test_heequb():
desired_log2s = np.array([[-2, -7, -2, -4, -2, -3, -2, -2, -1, -2],
[1, -10, 0, -6, -1, -4, -1, -2, -1, -2]])
for ind, dtype in enumerate(COMPLEX_DTYPES):
heequb = get_lapack_funcs('heequb', dtype=dtype)
d = np.array([dtype(1j) * 2**x for x in range(-5, 5)], dtype=dtype)
A = np.diag(d)
subdiags = np.array([dtype(1j) * 2**(9-x) for x in range(9)],
dtype=dtype)
A[range(1, 10), range(0, 9)] = subdiags
s, scond, amax, info = heequb(A, lower=1)
# See gh-10741
pre3_7_lapack_result = np.log2(s).astype(int) == desired_log2s[0, :]
post3_7_lapack_result = np.log2(s).astype(int) == desired_log2s[1, :]
assert pre3_7_lapack_result.all() or post3_7_lapack_result.all()