1378 lines
47 KiB
Python
1378 lines
47 KiB
Python
"""
|
|
python _generate_pyx.py
|
|
|
|
Generate Ufunc definition source files for scipy.special. Produces
|
|
files '_ufuncs.c' and '_ufuncs_cxx.c' by first producing Cython.
|
|
|
|
This will generate both calls to PyUFunc_FromFuncAndData and the
|
|
required ufunc inner loops.
|
|
|
|
The functions signatures are contained in 'functions.json', the syntax
|
|
for a function signature is
|
|
|
|
<function>: <name> ':' <input> '*' <output>
|
|
'->' <retval> '*' <ignored_retval>
|
|
<input>: <typecode>*
|
|
<output>: <typecode>*
|
|
<retval>: <typecode>?
|
|
<ignored_retval>: <typecode>?
|
|
<headers>: <header_name> [',' <header_name>]*
|
|
|
|
The input parameter types are denoted by single character type
|
|
codes, according to
|
|
|
|
'f': 'float'
|
|
'd': 'double'
|
|
'g': 'long double'
|
|
'F': 'float complex'
|
|
'D': 'double complex'
|
|
'G': 'long double complex'
|
|
'i': 'int'
|
|
'l': 'long'
|
|
'v': 'void'
|
|
|
|
If multiple kernel functions are given for a single ufunc, the one
|
|
which is used is determined by the standard ufunc mechanism. Kernel
|
|
functions that are listed first are also matched first against the
|
|
ufunc input types, so functions listed earlier take precedence.
|
|
|
|
In addition, versions with casted variables, such as d->f,D->F and
|
|
i->d are automatically generated.
|
|
|
|
There should be either a single header that contains all of the kernel
|
|
functions listed, or there should be one header for each kernel
|
|
function. Cython pxd files are allowed in addition to .h files.
|
|
|
|
Cython functions may use fused types, but the names in the list
|
|
should be the specialized ones, such as 'somefunc[float]'.
|
|
|
|
Function coming from C++ should have ``++`` appended to the name of
|
|
the header.
|
|
|
|
Floating-point exceptions inside these Ufuncs are converted to
|
|
special function errors --- which are separately controlled by the
|
|
user, and off by default, as they are usually not especially useful
|
|
for the user.
|
|
|
|
|
|
The C++ module
|
|
--------------
|
|
In addition to ``_ufuncs`` module, a second module ``_ufuncs_cxx`` is
|
|
generated. This module only exports function pointers that are to be
|
|
used when constructing some of the ufuncs in ``_ufuncs``. The function
|
|
pointers are exported via Cython's standard mechanism.
|
|
|
|
This mainly avoids build issues --- Python distutils has no way to
|
|
figure out what to do if you want to link both C++ and Fortran code in
|
|
the same shared library.
|
|
|
|
"""
|
|
|
|
from __future__ import division, print_function, absolute_import
|
|
|
|
#---------------------------------------------------------------------------------
|
|
# Extra code
|
|
#---------------------------------------------------------------------------------
|
|
|
|
UFUNCS_EXTRA_CODE_COMMON = """\
|
|
# This file is automatically generated by _generate_pyx.py.
|
|
# Do not edit manually!
|
|
from __future__ import absolute_import
|
|
|
|
include "_ufuncs_extra_code_common.pxi"
|
|
"""
|
|
|
|
UFUNCS_EXTRA_CODE = """\
|
|
include "_ufuncs_extra_code.pxi"
|
|
"""
|
|
|
|
UFUNCS_EXTRA_CODE_BOTTOM = """\
|
|
#
|
|
# Aliases
|
|
#
|
|
jn = jv
|
|
"""
|
|
|
|
CYTHON_SPECIAL_PXD = """\
|
|
# This file is automatically generated by _generate_pyx.py.
|
|
# Do not edit manually!
|
|
"""
|
|
|
|
CYTHON_SPECIAL_PYX = """\
|
|
# This file is automatically generated by _generate_pyx.py.
|
|
# Do not edit manually!
|
|
\"\"\"
|
|
.. highlight:: cython
|
|
|
|
Cython API for Special Functions
|
|
================================
|
|
|
|
Scalar, typed versions of many of the functions in ``scipy.special``
|
|
can be accessed directly from Cython; the complete list is given
|
|
below. Functions are overloaded using Cython fused types so their
|
|
names match their ufunc counterpart. The module follows the following
|
|
conventions:
|
|
|
|
- If a function's ufunc counterpart returns multiple values, then the
|
|
function returns its outputs via pointers in the final arguments
|
|
- If a function's ufunc counterpart returns a single value, then the
|
|
function's output is returned directly.
|
|
|
|
The module is usable from Cython via::
|
|
|
|
cimport scipy.special.cython_special
|
|
|
|
Error Handling
|
|
--------------
|
|
|
|
Functions can indicate an error by returning ``nan``; however they
|
|
cannot emit warnings like their counterparts in ``scipy.special``.
|
|
|
|
Available Functions
|
|
-------------------
|
|
|
|
FUNCLIST
|
|
\"\"\"
|
|
|
|
from __future__ import absolute_import
|
|
include "_cython_special.pxi"
|
|
"""
|
|
|
|
|
|
#---------------------------------------------------------------------------------
|
|
# Code generation
|
|
#---------------------------------------------------------------------------------
|
|
|
|
import os
|
|
import optparse
|
|
import re
|
|
import textwrap
|
|
import itertools
|
|
import numpy
|
|
import json
|
|
|
|
|
|
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
|
|
|
add_newdocs = __import__('add_newdocs')
|
|
|
|
CY_TYPES = {
|
|
'f': 'float',
|
|
'd': 'double',
|
|
'g': 'long double',
|
|
'F': 'float complex',
|
|
'D': 'double complex',
|
|
'G': 'long double complex',
|
|
'i': 'int',
|
|
'l': 'long',
|
|
'v': 'void',
|
|
}
|
|
|
|
C_TYPES = {
|
|
'f': 'npy_float',
|
|
'd': 'npy_double',
|
|
'g': 'npy_longdouble',
|
|
'F': 'npy_cfloat',
|
|
'D': 'npy_cdouble',
|
|
'G': 'npy_clongdouble',
|
|
'i': 'npy_int',
|
|
'l': 'npy_long',
|
|
'v': 'void',
|
|
}
|
|
|
|
TYPE_NAMES = {
|
|
'f': 'NPY_FLOAT',
|
|
'd': 'NPY_DOUBLE',
|
|
'g': 'NPY_LONGDOUBLE',
|
|
'F': 'NPY_CFLOAT',
|
|
'D': 'NPY_CDOUBLE',
|
|
'G': 'NPY_CLONGDOUBLE',
|
|
'i': 'NPY_INT',
|
|
'l': 'NPY_LONG',
|
|
}
|
|
|
|
CYTHON_SPECIAL_BENCHFUNCS = {
|
|
'airy': ['d*dddd', 'D*DDDD'],
|
|
'beta': ['dd'],
|
|
'erf': ['d', 'D'],
|
|
'exprel': ['d'],
|
|
'gamma': ['d', 'D'],
|
|
'jv': ['dd', 'dD'],
|
|
'loggamma': ['D'],
|
|
'logit': ['d'],
|
|
'psi': ['d', 'D'],
|
|
}
|
|
|
|
|
|
def underscore(arg):
|
|
return arg.replace(" ", "_")
|
|
|
|
|
|
def cast_order(c):
|
|
return ['ilfdgFDG'.index(x) for x in c]
|
|
|
|
|
|
# These downcasts will cause the function to return NaNs, unless the
|
|
# values happen to coincide exactly.
|
|
DANGEROUS_DOWNCAST = set([
|
|
('F', 'i'), ('F', 'l'), ('F', 'f'), ('F', 'd'), ('F', 'g'),
|
|
('D', 'i'), ('D', 'l'), ('D', 'f'), ('D', 'd'), ('D', 'g'),
|
|
('G', 'i'), ('G', 'l'), ('G', 'f'), ('G', 'd'), ('G', 'g'),
|
|
('f', 'i'), ('f', 'l'),
|
|
('d', 'i'), ('d', 'l'),
|
|
('g', 'i'), ('g', 'l'),
|
|
('l', 'i'),
|
|
])
|
|
|
|
NAN_VALUE = {
|
|
'f': 'NPY_NAN',
|
|
'd': 'NPY_NAN',
|
|
'g': 'NPY_NAN',
|
|
'F': 'NPY_NAN',
|
|
'D': 'NPY_NAN',
|
|
'G': 'NPY_NAN',
|
|
'i': '0xbad0bad0',
|
|
'l': '0xbad0bad0',
|
|
}
|
|
|
|
|
|
def generate_loop(func_inputs, func_outputs, func_retval,
|
|
ufunc_inputs, ufunc_outputs):
|
|
"""
|
|
Generate a UFunc loop function that calls a function given as its
|
|
data parameter with the specified input and output arguments and
|
|
return value.
|
|
|
|
This function can be passed to PyUFunc_FromFuncAndData.
|
|
|
|
Parameters
|
|
----------
|
|
func_inputs, func_outputs, func_retval : str
|
|
Signature of the function to call, given as type codes of the
|
|
input, output and return value arguments. These 1-character
|
|
codes are given according to the CY_TYPES and TYPE_NAMES
|
|
lists above.
|
|
|
|
The corresponding C function signature to be called is:
|
|
|
|
retval func(intype1 iv1, intype2 iv2, ..., outtype1 *ov1, ...);
|
|
|
|
If len(ufunc_outputs) == len(func_outputs)+1, the return value
|
|
is treated as the first output argument. Otherwise, the return
|
|
value is ignored.
|
|
|
|
ufunc_inputs, ufunc_outputs : str
|
|
Ufunc input and output signature.
|
|
|
|
This does not have to exactly match the function signature,
|
|
as long as the type casts work out on the C level.
|
|
|
|
Returns
|
|
-------
|
|
loop_name
|
|
Name of the generated loop function.
|
|
loop_body
|
|
Generated C code for the loop.
|
|
|
|
"""
|
|
if len(func_inputs) != len(ufunc_inputs):
|
|
raise ValueError("Function and ufunc have different number of inputs")
|
|
|
|
if len(func_outputs) != len(ufunc_outputs) and not (
|
|
func_retval != "v" and len(func_outputs)+1 == len(ufunc_outputs)):
|
|
raise ValueError("Function retval and ufunc outputs don't match")
|
|
|
|
name = "loop_%s_%s_%s_As_%s_%s" % (
|
|
func_retval, func_inputs, func_outputs, ufunc_inputs, ufunc_outputs
|
|
)
|
|
body = "cdef void %s(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:\n" % name
|
|
body += " cdef np.npy_intp i, n = dims[0]\n"
|
|
body += " cdef void *func = (<void**>data)[0]\n"
|
|
body += " cdef char *func_name = <char*>(<void**>data)[1]\n"
|
|
|
|
for j in range(len(ufunc_inputs)):
|
|
body += " cdef char *ip%d = args[%d]\n" % (j, j)
|
|
for j in range(len(ufunc_outputs)):
|
|
body += " cdef char *op%d = args[%d]\n" % (j, j + len(ufunc_inputs))
|
|
|
|
ftypes = []
|
|
fvars = []
|
|
outtypecodes = []
|
|
for j in range(len(func_inputs)):
|
|
ftypes.append(CY_TYPES[func_inputs[j]])
|
|
fvars.append("<%s>(<%s*>ip%d)[0]" % (
|
|
CY_TYPES[func_inputs[j]],
|
|
CY_TYPES[ufunc_inputs[j]], j))
|
|
|
|
if len(func_outputs)+1 == len(ufunc_outputs):
|
|
func_joff = 1
|
|
outtypecodes.append(func_retval)
|
|
body += " cdef %s ov0\n" % (CY_TYPES[func_retval],)
|
|
else:
|
|
func_joff = 0
|
|
|
|
for j, outtype in enumerate(func_outputs):
|
|
body += " cdef %s ov%d\n" % (CY_TYPES[outtype], j+func_joff)
|
|
ftypes.append("%s *" % CY_TYPES[outtype])
|
|
fvars.append("&ov%d" % (j+func_joff))
|
|
outtypecodes.append(outtype)
|
|
|
|
body += " for i in range(n):\n"
|
|
if len(func_outputs)+1 == len(ufunc_outputs):
|
|
rv = "ov0 = "
|
|
else:
|
|
rv = ""
|
|
|
|
funcall = " %s(<%s(*)(%s) nogil>func)(%s)\n" % (
|
|
rv, CY_TYPES[func_retval], ", ".join(ftypes), ", ".join(fvars))
|
|
|
|
# Cast-check inputs and call function
|
|
input_checks = []
|
|
for j in range(len(func_inputs)):
|
|
if (ufunc_inputs[j], func_inputs[j]) in DANGEROUS_DOWNCAST:
|
|
chk = "<%s>(<%s*>ip%d)[0] == (<%s*>ip%d)[0]" % (
|
|
CY_TYPES[func_inputs[j]], CY_TYPES[ufunc_inputs[j]], j,
|
|
CY_TYPES[ufunc_inputs[j]], j)
|
|
input_checks.append(chk)
|
|
|
|
if input_checks:
|
|
body += " if %s:\n" % (" and ".join(input_checks))
|
|
body += " " + funcall
|
|
body += " else:\n"
|
|
body += " sf_error.error(func_name, sf_error.DOMAIN, \"invalid input argument\")\n"
|
|
for j, outtype in enumerate(outtypecodes):
|
|
body += " ov%d = <%s>%s\n" % (
|
|
j, CY_TYPES[outtype], NAN_VALUE[outtype])
|
|
else:
|
|
body += funcall
|
|
|
|
# Assign and cast-check output values
|
|
for j, (outtype, fouttype) in enumerate(zip(ufunc_outputs, outtypecodes)):
|
|
if (fouttype, outtype) in DANGEROUS_DOWNCAST:
|
|
body += " if ov%d == <%s>ov%d:\n" % (j, CY_TYPES[outtype], j)
|
|
body += " (<%s *>op%d)[0] = <%s>ov%d\n" % (
|
|
CY_TYPES[outtype], j, CY_TYPES[outtype], j)
|
|
body += " else:\n"
|
|
body += " sf_error.error(func_name, sf_error.DOMAIN, \"invalid output\")\n"
|
|
body += " (<%s *>op%d)[0] = <%s>%s\n" % (
|
|
CY_TYPES[outtype], j, CY_TYPES[outtype], NAN_VALUE[outtype])
|
|
else:
|
|
body += " (<%s *>op%d)[0] = <%s>ov%d\n" % (
|
|
CY_TYPES[outtype], j, CY_TYPES[outtype], j)
|
|
for j in range(len(ufunc_inputs)):
|
|
body += " ip%d += steps[%d]\n" % (j, j)
|
|
for j in range(len(ufunc_outputs)):
|
|
body += " op%d += steps[%d]\n" % (j, j + len(ufunc_inputs))
|
|
|
|
body += " sf_error.check_fpe(func_name)\n"
|
|
|
|
return name, body
|
|
|
|
|
|
def generate_fused_type(codes):
|
|
"""
|
|
Generate name of and cython code for a fused type.
|
|
|
|
Parameters
|
|
----------
|
|
typecodes : str
|
|
Valid inputs to CY_TYPES (i.e. f, d, g, ...).
|
|
|
|
"""
|
|
cytypes = map(lambda x: CY_TYPES[x], codes)
|
|
name = codes + "_number_t"
|
|
declaration = ["ctypedef fused " + name + ":"]
|
|
for cytype in cytypes:
|
|
declaration.append(" " + cytype)
|
|
declaration = "\n".join(declaration)
|
|
return name, declaration
|
|
|
|
|
|
def generate_bench(name, codes):
|
|
tab = " "*4
|
|
top, middle, end = [], [], []
|
|
|
|
tmp = codes.split("*")
|
|
if len(tmp) > 1:
|
|
incodes = tmp[0]
|
|
outcodes = tmp[1]
|
|
else:
|
|
incodes = tmp[0]
|
|
outcodes = ""
|
|
|
|
inargs, inargs_and_types = [], []
|
|
for n, code in enumerate(incodes):
|
|
arg = "x{}".format(n)
|
|
inargs.append(arg)
|
|
inargs_and_types.append("{} {}".format(CY_TYPES[code], arg))
|
|
line = "def {{}}(int N, {}):".format(", ".join(inargs_and_types))
|
|
top.append(line)
|
|
top.append(tab + "cdef int n")
|
|
|
|
outargs = []
|
|
for n, code in enumerate(outcodes):
|
|
arg = "y{}".format(n)
|
|
outargs.append("&{}".format(arg))
|
|
line = "cdef {} {}".format(CY_TYPES[code], arg)
|
|
middle.append(tab + line)
|
|
|
|
end.append(tab + "for n in range(N):")
|
|
end.append(2*tab + "{}({})")
|
|
pyfunc = "_bench_{}_{}_{}".format(name, incodes, "py")
|
|
cyfunc = "_bench_{}_{}_{}".format(name, incodes, "cy")
|
|
pytemplate = "\n".join(top + end)
|
|
cytemplate = "\n".join(top + middle + end)
|
|
pybench = pytemplate.format(pyfunc, "_ufuncs." + name, ", ".join(inargs))
|
|
cybench = cytemplate.format(cyfunc, name, ", ".join(inargs + outargs))
|
|
return pybench, cybench
|
|
|
|
|
|
def generate_doc(name, specs):
|
|
tab = " "*4
|
|
doc = ["- :py:func:`~scipy.special.{}`::\n".format(name)]
|
|
for spec in specs:
|
|
incodes, outcodes = spec.split("->")
|
|
incodes = incodes.split("*")
|
|
intypes = list(map(lambda x: CY_TYPES[x], incodes[0]))
|
|
if len(incodes) > 1:
|
|
types = map(lambda x: "{} *".format(CY_TYPES[x]), incodes[1])
|
|
intypes.extend(types)
|
|
outtype = CY_TYPES[outcodes]
|
|
line = "{} {}({})".format(outtype, name, ", ".join(intypes))
|
|
doc.append(2*tab + line)
|
|
doc[-1] = "{}\n".format(doc[-1])
|
|
doc = "\n".join(doc)
|
|
return doc
|
|
|
|
|
|
def npy_cdouble_from_double_complex(var):
|
|
"""Cast a cython double complex to a numpy cdouble."""
|
|
res = "_complexstuff.npy_cdouble_from_double_complex({})".format(var)
|
|
return res
|
|
|
|
|
|
def double_complex_from_npy_cdouble(var):
|
|
"""Cast a numpy cdouble to a cython double complex."""
|
|
res = "_complexstuff.double_complex_from_npy_cdouble({})".format(var)
|
|
return res
|
|
|
|
|
|
def iter_variants(inputs, outputs):
|
|
"""
|
|
Generate variants of UFunc signatures, by changing variable types,
|
|
within the limitation that the corresponding C types casts still
|
|
work out.
|
|
|
|
This does not generate all possibilities, just the ones required
|
|
for the ufunc to work properly with the most common data types.
|
|
|
|
Parameters
|
|
----------
|
|
inputs, outputs : str
|
|
UFunc input and output signature strings
|
|
|
|
Yields
|
|
------
|
|
new_input, new_output : str
|
|
Modified input and output strings.
|
|
Also the original input/output pair is yielded.
|
|
|
|
"""
|
|
maps = [
|
|
# always use long instead of int (more common type on 64-bit)
|
|
('i', 'l'),
|
|
]
|
|
|
|
# float32-preserving signatures
|
|
if not ('i' in inputs or 'l' in inputs):
|
|
# Don't add float32 versions of ufuncs with integer arguments, as this
|
|
# can lead to incorrect dtype selection if the integer arguments are
|
|
# arrays, but float arguments are scalars.
|
|
# For instance sph_harm(0,[0],0,0).dtype == complex64
|
|
# This may be a NumPy bug, but we need to work around it.
|
|
# cf. gh-4895, https://github.com/numpy/numpy/issues/5895
|
|
maps = maps + [(a + 'dD', b + 'fF') for a, b in maps]
|
|
|
|
# do the replacements
|
|
for src, dst in maps:
|
|
new_inputs = inputs
|
|
new_outputs = outputs
|
|
for a, b in zip(src, dst):
|
|
new_inputs = new_inputs.replace(a, b)
|
|
new_outputs = new_outputs.replace(a, b)
|
|
yield new_inputs, new_outputs
|
|
|
|
|
|
class Func(object):
|
|
"""
|
|
Base class for Ufunc and FusedFunc.
|
|
|
|
"""
|
|
def __init__(self, name, signatures):
|
|
self.name = name
|
|
self.signatures = []
|
|
self.function_name_overrides = {}
|
|
|
|
for header in signatures.keys():
|
|
for name, sig in signatures[header].items():
|
|
inarg, outarg, ret = self._parse_signature(sig)
|
|
self.signatures.append((name, inarg, outarg, ret, header))
|
|
|
|
def _parse_signature(self, sig):
|
|
m = re.match(r"\s*([fdgFDGil]*)\s*\*\s*([fdgFDGil]*)\s*->\s*([*fdgFDGil]*)\s*$", sig)
|
|
if m:
|
|
inarg, outarg, ret = [x.strip() for x in m.groups()]
|
|
if ret.count('*') > 1:
|
|
raise ValueError("{}: Invalid signature: {}".format(self.name, sig))
|
|
return inarg, outarg, ret
|
|
m = re.match(r"\s*([fdgFDGil]*)\s*->\s*([fdgFDGil]?)\s*$", sig)
|
|
if m:
|
|
inarg, ret = [x.strip() for x in m.groups()]
|
|
return inarg, "", ret
|
|
raise ValueError("{}: Invalid signature: {}".format(self.name, sig))
|
|
|
|
def get_prototypes(self, nptypes_for_h=False):
|
|
prototypes = []
|
|
for func_name, inarg, outarg, ret, header in self.signatures:
|
|
ret = ret.replace('*', '')
|
|
c_args = ([C_TYPES[x] for x in inarg]
|
|
+ [C_TYPES[x] + ' *' for x in outarg])
|
|
cy_args = ([CY_TYPES[x] for x in inarg]
|
|
+ [CY_TYPES[x] + ' *' for x in outarg])
|
|
c_proto = "%s (*)(%s)" % (C_TYPES[ret], ", ".join(c_args))
|
|
if header.endswith("h") and nptypes_for_h:
|
|
cy_proto = c_proto + "nogil"
|
|
else:
|
|
cy_proto = "%s (*)(%s) nogil" % (CY_TYPES[ret], ", ".join(cy_args))
|
|
prototypes.append((func_name, c_proto, cy_proto, header))
|
|
return prototypes
|
|
|
|
def cython_func_name(self, c_name, specialized=False, prefix="_func_",
|
|
override=True):
|
|
# act on function name overrides
|
|
if override and c_name in self.function_name_overrides:
|
|
c_name = self.function_name_overrides[c_name]
|
|
prefix = ""
|
|
|
|
# support fused types
|
|
m = re.match(r'^(.*?)(\[.*\])$', c_name)
|
|
if m:
|
|
c_base_name, fused_part = m.groups()
|
|
else:
|
|
c_base_name, fused_part = c_name, ""
|
|
if specialized:
|
|
return "%s%s%s" % (prefix, c_base_name, fused_part.replace(' ', '_'))
|
|
else:
|
|
return "%s%s" % (prefix, c_base_name,)
|
|
|
|
|
|
class Ufunc(Func):
|
|
"""
|
|
Ufunc signature, restricted format suitable for special functions.
|
|
|
|
Parameters
|
|
----------
|
|
name
|
|
Name of the ufunc to create
|
|
signature
|
|
String of form 'func: fff*ff->f, func2: ddd->*i' describing
|
|
the C-level functions and types of their input arguments
|
|
and return values.
|
|
|
|
The syntax is 'function_name: inputparams*outputparams->output_retval*ignored_retval'
|
|
|
|
Attributes
|
|
----------
|
|
name : str
|
|
Python name for the Ufunc
|
|
signatures : list of (func_name, inarg_spec, outarg_spec, ret_spec, header_name)
|
|
List of parsed signatures
|
|
doc : str
|
|
Docstring, obtained from add_newdocs
|
|
function_name_overrides : dict of str->str
|
|
Overrides for the function names in signatures
|
|
|
|
"""
|
|
def __init__(self, name, signatures):
|
|
super(Ufunc, self).__init__(name, signatures)
|
|
self.doc = add_newdocs.get(name)
|
|
if self.doc is None:
|
|
raise ValueError("No docstring for ufunc %r" % name)
|
|
self.doc = textwrap.dedent(self.doc).strip()
|
|
|
|
def _get_signatures_and_loops(self, all_loops):
|
|
inarg_num = None
|
|
outarg_num = None
|
|
|
|
seen = set()
|
|
variants = []
|
|
|
|
def add_variant(func_name, inarg, outarg, ret, inp, outp):
|
|
if inp in seen:
|
|
return
|
|
seen.add(inp)
|
|
|
|
sig = (func_name, inp, outp)
|
|
if "v" in outp:
|
|
raise ValueError("%s: void signature %r" % (self.name, sig))
|
|
if len(inp) != inarg_num or len(outp) != outarg_num:
|
|
raise ValueError("%s: signature %r does not have %d/%d input/output args" % (
|
|
self.name, sig,
|
|
inarg_num, outarg_num))
|
|
|
|
loop_name, loop = generate_loop(inarg, outarg, ret, inp, outp)
|
|
all_loops[loop_name] = loop
|
|
variants.append((func_name, loop_name, inp, outp))
|
|
|
|
# First add base variants
|
|
for func_name, inarg, outarg, ret, header in self.signatures:
|
|
outp = re.sub(r'\*.*', '', ret) + outarg
|
|
ret = ret.replace('*', '')
|
|
if inarg_num is None:
|
|
inarg_num = len(inarg)
|
|
outarg_num = len(outp)
|
|
|
|
inp, outp = list(iter_variants(inarg, outp))[0]
|
|
add_variant(func_name, inarg, outarg, ret, inp, outp)
|
|
|
|
# Then the supplementary ones
|
|
for func_name, inarg, outarg, ret, header in self.signatures:
|
|
outp = re.sub(r'\*.*', '', ret) + outarg
|
|
ret = ret.replace('*', '')
|
|
for inp, outp in iter_variants(inarg, outp):
|
|
add_variant(func_name, inarg, outarg, ret, inp, outp)
|
|
|
|
# Then sort variants to input argument cast order
|
|
# -- the sort is stable, so functions earlier in the signature list
|
|
# are still preferred
|
|
variants.sort(key=lambda v: cast_order(v[2]))
|
|
|
|
return variants, inarg_num, outarg_num
|
|
|
|
def generate(self, all_loops):
|
|
toplevel = ""
|
|
|
|
variants, inarg_num, outarg_num = self._get_signatures_and_loops(all_loops)
|
|
|
|
loops = []
|
|
funcs = []
|
|
types = []
|
|
|
|
for func_name, loop_name, inputs, outputs in variants:
|
|
for x in inputs:
|
|
types.append(TYPE_NAMES[x])
|
|
for x in outputs:
|
|
types.append(TYPE_NAMES[x])
|
|
loops.append(loop_name)
|
|
funcs.append(func_name)
|
|
|
|
toplevel += "cdef np.PyUFuncGenericFunction ufunc_%s_loops[%d]\n" % (self.name, len(loops))
|
|
toplevel += "cdef void *ufunc_%s_ptr[%d]\n" % (self.name, 2*len(funcs))
|
|
toplevel += "cdef void *ufunc_%s_data[%d]\n" % (self.name, len(funcs))
|
|
toplevel += "cdef char ufunc_%s_types[%d]\n" % (self.name, len(types))
|
|
toplevel += 'cdef char *ufunc_%s_doc = (\n "%s")\n' % (
|
|
self.name,
|
|
self.doc.replace("\\", "\\\\").replace('"', '\\"').replace('\n', '\\n\"\n "')
|
|
)
|
|
|
|
for j, function in enumerate(loops):
|
|
toplevel += "ufunc_%s_loops[%d] = <np.PyUFuncGenericFunction>%s\n" % (self.name, j, function)
|
|
for j, type in enumerate(types):
|
|
toplevel += "ufunc_%s_types[%d] = <char>%s\n" % (self.name, j, type)
|
|
for j, func in enumerate(funcs):
|
|
toplevel += "ufunc_%s_ptr[2*%d] = <void*>%s\n" % (self.name, j,
|
|
self.cython_func_name(func, specialized=True))
|
|
toplevel += "ufunc_%s_ptr[2*%d+1] = <void*>(<char*>\"%s\")\n" % (self.name, j,
|
|
self.name)
|
|
for j, func in enumerate(funcs):
|
|
toplevel += "ufunc_%s_data[%d] = &ufunc_%s_ptr[2*%d]\n" % (
|
|
self.name, j, self.name, j)
|
|
|
|
toplevel += ('@ = np.PyUFunc_FromFuncAndData(ufunc_@_loops, '
|
|
'ufunc_@_data, ufunc_@_types, %d, %d, %d, 0, '
|
|
'"@", ufunc_@_doc, 0)\n' % (len(types)/(inarg_num+outarg_num),
|
|
inarg_num, outarg_num)
|
|
).replace('@', self.name)
|
|
|
|
return toplevel
|
|
|
|
|
|
class FusedFunc(Func):
|
|
"""
|
|
Generate code for a fused-type special function that can be
|
|
cimported in cython.
|
|
|
|
"""
|
|
def __init__(self, name, signatures):
|
|
super(FusedFunc, self).__init__(name, signatures)
|
|
self.doc = "See the documentation for scipy.special." + self.name
|
|
# "codes" are the keys for CY_TYPES
|
|
self.incodes, self.outcodes = self._get_codes()
|
|
self.fused_types = set()
|
|
self.intypes, infused_types = self._get_types(self.incodes)
|
|
self.fused_types.update(infused_types)
|
|
self.outtypes, outfused_types = self._get_types(self.outcodes)
|
|
self.fused_types.update(outfused_types)
|
|
self.invars, self.outvars = self._get_vars()
|
|
|
|
def _get_codes(self):
|
|
inarg_num, outarg_num = None, None
|
|
all_inp, all_outp = [], []
|
|
for _, inarg, outarg, ret, _ in self.signatures:
|
|
outp = re.sub(r'\*.*', '', ret) + outarg
|
|
if inarg_num is None:
|
|
inarg_num = len(inarg)
|
|
outarg_num = len(outp)
|
|
inp, outp = list(iter_variants(inarg, outp))[0]
|
|
all_inp.append(inp)
|
|
all_outp.append(outp)
|
|
|
|
incodes = []
|
|
for n in range(inarg_num):
|
|
codes = unique(map(lambda x: x[n], all_inp))
|
|
codes.sort()
|
|
incodes.append(''.join(codes))
|
|
outcodes = []
|
|
for n in range(outarg_num):
|
|
codes = unique(map(lambda x: x[n], all_outp))
|
|
codes.sort()
|
|
outcodes.append(''.join(codes))
|
|
|
|
return tuple(incodes), tuple(outcodes)
|
|
|
|
def _get_types(self, codes):
|
|
all_types = []
|
|
fused_types = set()
|
|
for code in codes:
|
|
if len(code) == 1:
|
|
# It's not a fused type
|
|
all_types.append((CY_TYPES[code], code))
|
|
else:
|
|
# It's a fused type
|
|
fused_type, dec = generate_fused_type(code)
|
|
fused_types.add(dec)
|
|
all_types.append((fused_type, code))
|
|
return all_types, fused_types
|
|
|
|
def _get_vars(self):
|
|
invars = ["x{}".format(n) for n in range(len(self.intypes))]
|
|
outvars = ["y{}".format(n) for n in range(len(self.outtypes))]
|
|
return invars, outvars
|
|
|
|
def _get_conditional(self, types, codes, adverb):
|
|
"""Generate an if/elif/else clause that selects a specialization of
|
|
fused types.
|
|
|
|
"""
|
|
clauses = []
|
|
seen = set()
|
|
for (typ, typcode), code in zip(types, codes):
|
|
if len(typcode) == 1:
|
|
continue
|
|
if typ not in seen:
|
|
clauses.append("{} is {}".format(typ, underscore(CY_TYPES[code])))
|
|
seen.add(typ)
|
|
if clauses and adverb != "else":
|
|
line = "{} {}:".format(adverb, " and ".join(clauses))
|
|
elif clauses and adverb == "else":
|
|
line = "else:"
|
|
else:
|
|
line = None
|
|
return line
|
|
|
|
def _get_incallvars(self, intypes, c):
|
|
"""Generate pure input variables to a specialization,
|
|
i.e. variables that aren't used to return a value.
|
|
|
|
"""
|
|
incallvars = []
|
|
for n, intype in enumerate(intypes):
|
|
var = self.invars[n]
|
|
if c and intype == "double complex":
|
|
var = npy_cdouble_from_double_complex(var)
|
|
incallvars.append(var)
|
|
return incallvars
|
|
|
|
def _get_outcallvars(self, outtypes, c):
|
|
"""Generate output variables to a specialization,
|
|
i.e. pointers that are used to return values.
|
|
|
|
"""
|
|
outcallvars, tmpvars, casts = [], [], []
|
|
# If there are more out variables than out types, we want the
|
|
# tail of the out variables
|
|
start = len(self.outvars) - len(outtypes)
|
|
outvars = self.outvars[start:]
|
|
for n, (var, outtype) in enumerate(zip(outvars, outtypes)):
|
|
if c and outtype == "double complex":
|
|
tmp = "tmp{}".format(n)
|
|
tmpvars.append(tmp)
|
|
outcallvars.append("&{}".format(tmp))
|
|
tmpcast = double_complex_from_npy_cdouble(tmp)
|
|
casts.append("{}[0] = {}".format(var, tmpcast))
|
|
else:
|
|
outcallvars.append("{}".format(var))
|
|
return outcallvars, tmpvars, casts
|
|
|
|
def _get_nan_decs(self):
|
|
"""Set all variables to nan for specializations of fused types for
|
|
which don't have signatures.
|
|
|
|
"""
|
|
# Set non fused-type variables to nan
|
|
tab = " "*4
|
|
fused_types, lines = [], [tab + "else:"]
|
|
seen = set()
|
|
for outvar, outtype, code in zip(self.outvars, self.outtypes, self.outcodes):
|
|
if len(code) == 1:
|
|
line = "{}[0] = {}".format(outvar, NAN_VALUE[code])
|
|
lines.append(2*tab + line)
|
|
else:
|
|
fused_type = outtype
|
|
name, _ = fused_type
|
|
if name not in seen:
|
|
fused_types.append(fused_type)
|
|
seen.add(name)
|
|
if not fused_types:
|
|
return lines
|
|
|
|
# Set fused-type variables to nan
|
|
all_codes = tuple([codes for _unused, codes in fused_types])
|
|
|
|
codelens = list(map(lambda x: len(x), all_codes))
|
|
last = numpy.prod(codelens) - 1
|
|
for m, codes in enumerate(itertools.product(*all_codes)):
|
|
fused_codes, decs = [], []
|
|
for n, fused_type in enumerate(fused_types):
|
|
code = codes[n]
|
|
fused_codes.append(underscore(CY_TYPES[code]))
|
|
for nn, outvar in enumerate(self.outvars):
|
|
if self.outtypes[nn] == fused_type:
|
|
line = "{}[0] = {}".format(outvar, NAN_VALUE[code])
|
|
decs.append(line)
|
|
if m == 0:
|
|
adverb = "if"
|
|
elif m == last:
|
|
adverb = "else"
|
|
else:
|
|
adverb = "elif"
|
|
cond = self._get_conditional(fused_types, codes, adverb)
|
|
lines.append(2*tab + cond)
|
|
lines.extend(map(lambda x: 3*tab + x, decs))
|
|
return lines
|
|
|
|
def _get_tmp_decs(self, all_tmpvars):
|
|
"""Generate the declarations of any necessary temporary
|
|
variables.
|
|
|
|
"""
|
|
tab = " "*4
|
|
tmpvars = list(all_tmpvars)
|
|
tmpvars.sort()
|
|
tmpdecs = [tab + "cdef npy_cdouble {}".format(tmpvar)
|
|
for tmpvar in tmpvars]
|
|
return tmpdecs
|
|
|
|
def _get_python_wrap(self):
|
|
"""Generate a python wrapper for functions which pass their
|
|
arguments as pointers.
|
|
|
|
"""
|
|
tab = " "*4
|
|
body, callvars = [], []
|
|
for (intype, _), invar in zip(self.intypes, self.invars):
|
|
callvars.append("{} {}".format(intype, invar))
|
|
line = "def _{}_pywrap({}):".format(self.name, ", ".join(callvars))
|
|
body.append(line)
|
|
for (outtype, _), outvar in zip(self.outtypes, self.outvars):
|
|
line = "cdef {} {}".format(outtype, outvar)
|
|
body.append(tab + line)
|
|
addr_outvars = map(lambda x: "&{}".format(x), self.outvars)
|
|
line = "{}({}, {})".format(self.name, ", ".join(self.invars),
|
|
", ".join(addr_outvars))
|
|
body.append(tab + line)
|
|
line = "return {}".format(", ".join(self.outvars))
|
|
body.append(tab + line)
|
|
body = "\n".join(body)
|
|
return body
|
|
|
|
def _get_common(self, signum, sig):
|
|
"""Generate code common to all the _generate_* methods."""
|
|
tab = " "*4
|
|
func_name, incodes, outcodes, retcode, header = sig
|
|
# Convert ints to longs; cf. iter_variants()
|
|
incodes = incodes.replace('i', 'l')
|
|
outcodes = outcodes.replace('i', 'l')
|
|
retcode = retcode.replace('i', 'l')
|
|
|
|
if header.endswith("h"):
|
|
c = True
|
|
else:
|
|
c = False
|
|
if header.endswith("++"):
|
|
cpp = True
|
|
else:
|
|
cpp = False
|
|
|
|
intypes = list(map(lambda x: CY_TYPES[x], incodes))
|
|
outtypes = list(map(lambda x: CY_TYPES[x], outcodes))
|
|
retcode = re.sub(r'\*.*', '', retcode)
|
|
if not retcode:
|
|
retcode = 'v'
|
|
rettype = CY_TYPES[retcode]
|
|
|
|
if cpp:
|
|
# Functions from _ufuncs_cxx are exported as a void*
|
|
# pointers; cast them to the correct types
|
|
func_name = "scipy.special._ufuncs_cxx._export_{}".format(func_name)
|
|
func_name = "(<{}(*)({}) nogil>{})"\
|
|
.format(rettype, ", ".join(intypes + outtypes), func_name)
|
|
else:
|
|
func_name = self.cython_func_name(func_name, specialized=True)
|
|
|
|
if signum == 0:
|
|
adverb = "if"
|
|
else:
|
|
adverb = "elif"
|
|
cond = self._get_conditional(self.intypes, incodes, adverb)
|
|
if cond:
|
|
lines = [tab + cond]
|
|
sp = 2*tab
|
|
else:
|
|
lines = []
|
|
sp = tab
|
|
|
|
return func_name, incodes, outcodes, retcode, \
|
|
intypes, outtypes, rettype, c, lines, sp
|
|
|
|
def _generate_from_return_and_no_outargs(self):
|
|
tab = " "*4
|
|
specs, body = [], []
|
|
for signum, sig in enumerate(self.signatures):
|
|
func_name, incodes, outcodes, retcode, intypes, outtypes, \
|
|
rettype, c, lines, sp = self._get_common(signum, sig)
|
|
body.extend(lines)
|
|
|
|
# Generate the call to the specialized function
|
|
callvars = self._get_incallvars(intypes, c)
|
|
call = "{}({})".format(func_name, ", ".join(callvars))
|
|
if c and rettype == "double complex":
|
|
call = double_complex_from_npy_cdouble(call)
|
|
line = sp + "return {}".format(call)
|
|
body.append(line)
|
|
sig = "{}->{}".format(incodes, retcode)
|
|
specs.append(sig)
|
|
|
|
if len(specs) > 1:
|
|
# Return nan for signatures without a specialization
|
|
body.append(tab + "else:")
|
|
outtype, outcodes = self.outtypes[0]
|
|
last = len(outcodes) - 1
|
|
if len(outcodes) == 1:
|
|
line = "return {}".format(NAN_VALUE[outcodes])
|
|
body.append(2*tab + line)
|
|
else:
|
|
for n, code in enumerate(outcodes):
|
|
if n == 0:
|
|
adverb = "if"
|
|
elif n == last:
|
|
adverb = "else"
|
|
else:
|
|
adverb = "elif"
|
|
cond = self._get_conditional(self.outtypes, code, adverb)
|
|
body.append(2*tab + cond)
|
|
line = "return {}".format(NAN_VALUE[code])
|
|
body.append(3*tab + line)
|
|
|
|
# Generate the head of the function
|
|
callvars, head = [], []
|
|
for n, (intype, _) in enumerate(self.intypes):
|
|
callvars.append("{} {}".format(intype, self.invars[n]))
|
|
(outtype, _) = self.outtypes[0]
|
|
dec = "cpdef {} {}({}) nogil".format(outtype, self.name, ", ".join(callvars))
|
|
head.append(dec + ":")
|
|
head.append(tab + '"""{}"""'.format(self.doc))
|
|
|
|
src = "\n".join(head + body)
|
|
return dec, src, specs
|
|
|
|
def _generate_from_outargs_and_no_return(self):
|
|
tab = " "*4
|
|
all_tmpvars = set()
|
|
specs, body = [], []
|
|
for signum, sig in enumerate(self.signatures):
|
|
func_name, incodes, outcodes, retcode, intypes, outtypes, \
|
|
rettype, c, lines, sp = self._get_common(signum, sig)
|
|
body.extend(lines)
|
|
|
|
# Generate the call to the specialized function
|
|
callvars = self._get_incallvars(intypes, c)
|
|
outcallvars, tmpvars, casts = self._get_outcallvars(outtypes, c)
|
|
callvars.extend(outcallvars)
|
|
all_tmpvars.update(tmpvars)
|
|
|
|
call = "{}({})".format(func_name, ", ".join(callvars))
|
|
body.append(sp + call)
|
|
body.extend(map(lambda x: sp + x, casts))
|
|
if len(outcodes) == 1:
|
|
sig = "{}->{}".format(incodes, outcodes)
|
|
specs.append(sig)
|
|
else:
|
|
sig = "{}*{}->v".format(incodes, outcodes)
|
|
specs.append(sig)
|
|
|
|
if len(specs) > 1:
|
|
lines = self._get_nan_decs()
|
|
body.extend(lines)
|
|
|
|
if len(self.outvars) == 1:
|
|
line = "return {}[0]".format(self.outvars[0])
|
|
body.append(tab + line)
|
|
|
|
# Generate the head of the function
|
|
callvars, head = [], []
|
|
for invar, (intype, _) in zip(self.invars, self.intypes):
|
|
callvars.append("{} {}".format(intype, invar))
|
|
if len(self.outvars) > 1:
|
|
for outvar, (outtype, _) in zip(self.outvars, self.outtypes):
|
|
callvars.append("{} *{}".format(outtype, outvar))
|
|
if len(self.outvars) == 1:
|
|
outtype, _ = self.outtypes[0]
|
|
dec = "cpdef {} {}({}) nogil".format(outtype, self.name, ", ".join(callvars))
|
|
else:
|
|
dec = "cdef void {}({}) nogil".format(self.name, ", ".join(callvars))
|
|
head.append(dec + ":")
|
|
head.append(tab + '"""{}"""'.format(self.doc))
|
|
if len(self.outvars) == 1:
|
|
outvar = self.outvars[0]
|
|
outtype, _ = self.outtypes[0]
|
|
line = "cdef {} {}".format(outtype, outvar)
|
|
head.append(tab + line)
|
|
head.extend(self._get_tmp_decs(all_tmpvars))
|
|
|
|
src = "\n".join(head + body)
|
|
return dec, src, specs
|
|
|
|
def _generate_from_outargs_and_return(self):
|
|
tab = " "*4
|
|
all_tmpvars = set()
|
|
specs, body = [], []
|
|
for signum, sig in enumerate(self.signatures):
|
|
func_name, incodes, outcodes, retcode, intypes, outtypes, \
|
|
rettype, c, lines, sp = self._get_common(signum, sig)
|
|
body.extend(lines)
|
|
|
|
# Generate the call to the specialized function
|
|
callvars = self._get_incallvars(intypes, c)
|
|
outcallvars, tmpvars, casts = self._get_outcallvars(outtypes, c)
|
|
callvars.extend(outcallvars)
|
|
all_tmpvars.update(tmpvars)
|
|
call = "{}({})".format(func_name, ", ".join(callvars))
|
|
if c and rettype == "double complex":
|
|
call = double_complex_from_npy_cdouble(call)
|
|
call = "{}[0] = {}".format(self.outvars[0], call)
|
|
body.append(sp + call)
|
|
body.extend(map(lambda x: sp + x, casts))
|
|
sig = "{}*{}->v".format(incodes, outcodes + retcode)
|
|
specs.append(sig)
|
|
|
|
if len(specs) > 1:
|
|
lines = self._get_nan_decs()
|
|
body.extend(lines)
|
|
|
|
# Generate the head of the function
|
|
callvars, head = [], []
|
|
for invar, (intype, _) in zip(self.invars, self.intypes):
|
|
callvars.append("{} {}".format(intype, invar))
|
|
for outvar, (outtype, _) in zip(self.outvars, self.outtypes):
|
|
callvars.append("{} *{}".format(outtype, outvar))
|
|
dec = "cdef void {}({}) nogil".format(self.name, ", ".join(callvars))
|
|
head.append(dec + ":")
|
|
head.append(tab + '"""{}"""'.format(self.doc))
|
|
head.extend(self._get_tmp_decs(all_tmpvars))
|
|
|
|
src = "\n".join(head + body)
|
|
return dec, src, specs
|
|
|
|
def generate(self):
|
|
_, _, outcodes, retcode, _ = self.signatures[0]
|
|
retcode = re.sub(r'\*.*', '', retcode)
|
|
if not retcode:
|
|
retcode = 'v'
|
|
|
|
if len(outcodes) == 0 and retcode != 'v':
|
|
dec, src, specs = self._generate_from_return_and_no_outargs()
|
|
elif len(outcodes) > 0 and retcode == 'v':
|
|
dec, src, specs = self._generate_from_outargs_and_no_return()
|
|
elif len(outcodes) > 0 and retcode != 'v':
|
|
dec, src, specs = self._generate_from_outargs_and_return()
|
|
else:
|
|
raise ValueError("Invalid signature")
|
|
|
|
if len(self.outvars) > 1:
|
|
wrap = self._get_python_wrap()
|
|
else:
|
|
wrap = None
|
|
|
|
return dec, src, specs, self.fused_types, wrap
|
|
|
|
|
|
def get_declaration(ufunc, c_name, c_proto, cy_proto, header, proto_h_filename):
|
|
"""
|
|
Construct a Cython declaration of a function coming either from a
|
|
pxd or a header file. Do sufficient tricks to enable compile-time
|
|
type checking against the signature expected by the ufunc.
|
|
"""
|
|
|
|
defs = []
|
|
defs_h = []
|
|
|
|
var_name = c_name.replace('[', '_').replace(']', '_').replace(' ', '_')
|
|
|
|
if header.endswith('.pxd'):
|
|
defs.append("from .%s cimport %s as %s" % (
|
|
header[:-4], ufunc.cython_func_name(c_name, prefix=""),
|
|
ufunc.cython_func_name(c_name)))
|
|
|
|
# check function signature at compile time
|
|
proto_name = '_proto_%s_t' % var_name
|
|
defs.append("ctypedef %s" % (cy_proto.replace('(*)', proto_name)))
|
|
defs.append("cdef %s *%s_var = &%s" % (
|
|
proto_name, proto_name, ufunc.cython_func_name(c_name, specialized=True)))
|
|
else:
|
|
# redeclare the function, so that the assumed
|
|
# signature is checked at compile time
|
|
new_name = "%s \"%s\"" % (ufunc.cython_func_name(c_name), c_name)
|
|
defs.append("cdef extern from \"%s\":" % proto_h_filename)
|
|
defs.append(" cdef %s" % (cy_proto.replace('(*)', new_name)))
|
|
defs_h.append("#include \"%s\"" % header)
|
|
defs_h.append("%s;" % (c_proto.replace('(*)', c_name)))
|
|
|
|
return defs, defs_h, var_name
|
|
|
|
|
|
def generate_ufuncs(fn_prefix, cxx_fn_prefix, ufuncs):
|
|
filename = fn_prefix + ".pyx"
|
|
proto_h_filename = fn_prefix + '_defs.h'
|
|
|
|
cxx_proto_h_filename = cxx_fn_prefix + '_defs.h'
|
|
cxx_pyx_filename = cxx_fn_prefix + ".pyx"
|
|
cxx_pxd_filename = cxx_fn_prefix + ".pxd"
|
|
|
|
toplevel = ""
|
|
|
|
# for _ufuncs*
|
|
defs = []
|
|
defs_h = []
|
|
all_loops = {}
|
|
|
|
# for _ufuncs_cxx*
|
|
cxx_defs = []
|
|
cxx_pxd_defs = [
|
|
"from . cimport sf_error",
|
|
"cdef void _set_action(sf_error.sf_error_t, sf_error.sf_action_t) nogil"
|
|
]
|
|
cxx_defs_h = []
|
|
|
|
ufuncs.sort(key=lambda u: u.name)
|
|
|
|
for ufunc in ufuncs:
|
|
# generate function declaration and type checking snippets
|
|
cfuncs = ufunc.get_prototypes()
|
|
for c_name, c_proto, cy_proto, header in cfuncs:
|
|
if header.endswith('++'):
|
|
header = header[:-2]
|
|
|
|
# for the CXX module
|
|
item_defs, item_defs_h, var_name = get_declaration(ufunc, c_name, c_proto, cy_proto,
|
|
header, cxx_proto_h_filename)
|
|
cxx_defs.extend(item_defs)
|
|
cxx_defs_h.extend(item_defs_h)
|
|
|
|
cxx_defs.append("cdef void *_export_%s = <void*>%s" % (
|
|
var_name, ufunc.cython_func_name(c_name, specialized=True, override=False)))
|
|
cxx_pxd_defs.append("cdef void *_export_%s" % (var_name,))
|
|
|
|
# let cython grab the function pointer from the c++ shared library
|
|
ufunc.function_name_overrides[c_name] = "scipy.special._ufuncs_cxx._export_" + var_name
|
|
else:
|
|
# usual case
|
|
item_defs, item_defs_h, _ = get_declaration(ufunc, c_name, c_proto, cy_proto, header,
|
|
proto_h_filename)
|
|
defs.extend(item_defs)
|
|
defs_h.extend(item_defs_h)
|
|
|
|
# ufunc creation code snippet
|
|
t = ufunc.generate(all_loops)
|
|
toplevel += t + "\n"
|
|
|
|
# Produce output
|
|
toplevel = "\n".join(sorted(all_loops.values()) + defs + [toplevel])
|
|
# Generate an `__all__` for the module
|
|
all_ufuncs = (
|
|
[
|
|
"'{}'".format(ufunc.name)
|
|
for ufunc in ufuncs if not ufunc.name.startswith('_')
|
|
]
|
|
+ ["'geterr'", "'seterr'", "'errstate'", "'jn'"]
|
|
)
|
|
module_all = '__all__ = [{}]'.format(', '.join(all_ufuncs))
|
|
|
|
with open(filename, 'w') as f:
|
|
f.write(UFUNCS_EXTRA_CODE_COMMON)
|
|
f.write(UFUNCS_EXTRA_CODE)
|
|
f.write(module_all)
|
|
f.write("\n")
|
|
f.write(toplevel)
|
|
f.write(UFUNCS_EXTRA_CODE_BOTTOM)
|
|
|
|
defs_h = unique(defs_h)
|
|
with open(proto_h_filename, 'w') as f:
|
|
f.write("#ifndef UFUNCS_PROTO_H\n#define UFUNCS_PROTO_H 1\n")
|
|
f.write("\n".join(defs_h))
|
|
f.write("\n#endif\n")
|
|
|
|
cxx_defs_h = unique(cxx_defs_h)
|
|
with open(cxx_proto_h_filename, 'w') as f:
|
|
f.write("#ifndef UFUNCS_PROTO_H\n#define UFUNCS_PROTO_H 1\n")
|
|
f.write("\n".join(cxx_defs_h))
|
|
f.write("\n#endif\n")
|
|
|
|
with open(cxx_pyx_filename, 'w') as f:
|
|
f.write(UFUNCS_EXTRA_CODE_COMMON)
|
|
f.write("\n")
|
|
f.write("\n".join(cxx_defs))
|
|
f.write("\n# distutils: language = c++\n")
|
|
|
|
with open(cxx_pxd_filename, 'w') as f:
|
|
f.write("\n".join(cxx_pxd_defs))
|
|
|
|
|
|
def generate_fused_funcs(modname, ufunc_fn_prefix, fused_funcs):
|
|
pxdfile = modname + ".pxd"
|
|
pyxfile = modname + ".pyx"
|
|
proto_h_filename = ufunc_fn_prefix + '_defs.h'
|
|
|
|
sources = []
|
|
declarations = []
|
|
# Code for benchmarks
|
|
bench_aux = []
|
|
fused_types = set()
|
|
# Parameters for the tests
|
|
doc = []
|
|
defs = []
|
|
|
|
for func in fused_funcs:
|
|
if func.name.startswith("_"):
|
|
# Don't try to deal with functions that have extra layers
|
|
# of wrappers.
|
|
continue
|
|
|
|
# Get the function declaration for the .pxd and the source
|
|
# code for the .pyx
|
|
dec, src, specs, func_fused_types, wrap = func.generate()
|
|
declarations.append(dec)
|
|
sources.append(src)
|
|
if wrap:
|
|
sources.append(wrap)
|
|
fused_types.update(func_fused_types)
|
|
|
|
# Declare the specializations
|
|
cfuncs = func.get_prototypes(nptypes_for_h=True)
|
|
for c_name, c_proto, cy_proto, header in cfuncs:
|
|
if header.endswith('++'):
|
|
# We grab the c++ functions from the c++ module
|
|
continue
|
|
item_defs, _, _ = get_declaration(func, c_name, c_proto,
|
|
cy_proto, header,
|
|
proto_h_filename)
|
|
defs.extend(item_defs)
|
|
|
|
# Add a line to the documentation
|
|
doc.append(generate_doc(func.name, specs))
|
|
|
|
# Generate code for benchmarks
|
|
if func.name in CYTHON_SPECIAL_BENCHFUNCS:
|
|
for codes in CYTHON_SPECIAL_BENCHFUNCS[func.name]:
|
|
pybench, cybench = generate_bench(func.name, codes)
|
|
bench_aux.extend([pybench, cybench])
|
|
|
|
fused_types = list(fused_types)
|
|
fused_types.sort()
|
|
|
|
with open(pxdfile, 'w') as f:
|
|
f.write(CYTHON_SPECIAL_PXD)
|
|
f.write("\n")
|
|
f.write("\n\n".join(fused_types))
|
|
f.write("\n\n")
|
|
f.write("\n".join(declarations))
|
|
with open(pyxfile, 'w') as f:
|
|
header = CYTHON_SPECIAL_PYX
|
|
header = header.replace("FUNCLIST", "\n".join(doc))
|
|
f.write(header)
|
|
f.write("\n")
|
|
f.write("\n".join(defs))
|
|
f.write("\n\n")
|
|
f.write("\n\n".join(sources))
|
|
f.write("\n\n")
|
|
f.write("\n\n".join(bench_aux))
|
|
|
|
|
|
def unique(lst):
|
|
"""
|
|
Return a list without repeated entries (first occurrence is kept),
|
|
preserving order.
|
|
"""
|
|
seen = set()
|
|
new_lst = []
|
|
for item in lst:
|
|
if item in seen:
|
|
continue
|
|
seen.add(item)
|
|
new_lst.append(item)
|
|
return new_lst
|
|
|
|
|
|
def all_newer(src_files, dst_files):
|
|
from distutils.dep_util import newer
|
|
return all(os.path.exists(dst) and newer(dst, src)
|
|
for dst in dst_files for src in src_files)
|
|
|
|
|
|
def main():
|
|
p = optparse.OptionParser(usage=(__doc__ or '').strip())
|
|
options, args = p.parse_args()
|
|
if len(args) != 0:
|
|
p.error('invalid number of arguments')
|
|
|
|
pwd = os.path.dirname(__file__)
|
|
src_files = (os.path.abspath(__file__),
|
|
os.path.abspath(os.path.join(pwd, 'functions.json')),
|
|
os.path.abspath(os.path.join(pwd, 'add_newdocs.py')))
|
|
dst_files = ('_ufuncs.pyx',
|
|
'_ufuncs_defs.h',
|
|
'_ufuncs_cxx.pyx',
|
|
'_ufuncs_cxx.pxd',
|
|
'_ufuncs_cxx_defs.h',
|
|
'cython_special.pyx',
|
|
'cython_special.pxd')
|
|
|
|
os.chdir(BASE_DIR)
|
|
|
|
if all_newer(src_files, dst_files):
|
|
print("scipy/special/_generate_pyx.py: all files up-to-date")
|
|
return
|
|
|
|
ufuncs, fused_funcs = [], []
|
|
with open('functions.json') as data:
|
|
functions = json.load(data)
|
|
for f, sig in functions.items():
|
|
ufuncs.append(Ufunc(f, sig))
|
|
fused_funcs.append(FusedFunc(f, sig))
|
|
generate_ufuncs("_ufuncs", "_ufuncs_cxx", ufuncs)
|
|
generate_fused_funcs("cython_special", "_ufuncs", fused_funcs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|