LSR/env/lib/python3.6/site-packages/scipy/stats/_hypotests.py
2020-06-04 17:24:47 +02:00

133 lines
5.2 KiB
Python

from __future__ import division, print_function, absolute_import
from collections import namedtuple
import numpy as np
import warnings
from ._continuous_distns import chi2
Epps_Singleton_2sampResult = namedtuple('Epps_Singleton_2sampResult',
('statistic', 'pvalue'))
def epps_singleton_2samp(x, y, t=(0.4, 0.8)):
"""
Compute the Epps-Singleton (ES) test statistic.
Test the null hypothesis that two samples have the same underlying
probability distribution.
Parameters
----------
x, y : array-like
The two samples of observations to be tested. Input must not have more
than one dimension. Samples can have different lengths.
t : array-like, optional
The points (t1, ..., tn) where the empirical characteristic function is
to be evaluated. It should be positive distinct numbers. The default
value (0.4, 0.8) is proposed in [1]_. Input must not have more than
one dimension.
Returns
-------
statistic : float
The test statistic.
pvalue : float
The associated p-value based on the asymptotic chi2-distribution.
See Also
--------
ks_2samp, anderson_ksamp
Notes
-----
Testing whether two samples are generated by the same underlying
distribution is a classical question in statistics. A widely used test is
the Kolmogorov-Smirnov (KS) test which relies on the empirical
distribution function. Epps and Singleton introduce a test based on the
empirical characteristic function in [1]_.
One advantage of the ES test compared to the KS test is that is does
not assume a continuous distribution. In [1]_, the authors conclude
that the test also has a higher power than the KS test in many
examples. They recommend the use of the ES test for discrete samples as
well as continuous samples with at least 25 observations each, whereas
`anderson_ksamp` is recommended for smaller sample sizes in the
continuous case.
The p-value is computed from the asymptotic distribution of the test
statistic which follows a `chi2` distribution. If the sample size of both
`x` and `y` is below 25, the small sample correction proposed in [1]_ is
applied to the test statistic.
The default values of `t` are determined in [1]_ by considering
various distributions and finding good values that lead to a high power
of the test in general. Table III in [1]_ gives the optimal values for
the distributions tested in that study. The values of `t` are scaled by
the semi-interquartile range in the implementation, see [1]_.
References
----------
.. [1] T. W. Epps and K. J. Singleton, "An omnibus test for the two-sample
problem using the empirical characteristic function", Journal of
Statistical Computation and Simulation 26, p. 177--203, 1986.
.. [2] S. J. Goerg and J. Kaiser, "Nonparametric testing of distributions
- the Epps-Singleton two-sample test using the empirical characteristic
function", The Stata Journal 9(3), p. 454--465, 2009.
"""
x, y, t = np.asarray(x), np.asarray(y), np.asarray(t)
# check if x and y are valid inputs
if x.ndim > 1:
raise ValueError('x must be 1d, but x.ndim equals {}.'.format(x.ndim))
if y.ndim > 1:
raise ValueError('y must be 1d, but y.ndim equals {}.'.format(y.ndim))
nx, ny = len(x), len(y)
if (nx < 5) or (ny < 5):
raise ValueError('x and y should have at least 5 elements, but len(x) '
'= {} and len(y) = {}.'.format(nx, ny))
if not np.isfinite(x).all():
raise ValueError('x must not contain nonfinite values.')
if not np.isfinite(y).all():
raise ValueError('y must not contain nonfinite values.')
n = nx + ny
# check if t is valid
if t.ndim > 1:
raise ValueError('t must be 1d, but t.ndim equals {}.'.format(t.ndim))
if np.less_equal(t, 0).any():
raise ValueError('t must contain positive elements only.')
# rescale t with semi-iqr as proposed in [1]; import iqr here to avoid
# circular import
from scipy.stats import iqr
sigma = iqr(np.hstack((x, y))) / 2
ts = np.reshape(t, (-1, 1)) / sigma
# covariance estimation of ES test
gx = np.vstack((np.cos(ts*x), np.sin(ts*x))).T # shape = (nx, 2*len(t))
gy = np.vstack((np.cos(ts*y), np.sin(ts*y))).T
cov_x = np.cov(gx.T, bias=True) # the test uses biased cov-estimate
cov_y = np.cov(gy.T, bias=True)
est_cov = (n/nx)*cov_x + (n/ny)*cov_y
est_cov_inv = np.linalg.pinv(est_cov)
r = np.linalg.matrix_rank(est_cov_inv)
if r < 2*len(t):
warnings.warn('Estimated covariance matrix does not have full rank. '
'This indicates a bad choice of the input t and the '
'test might not be consistent.') # see p. 183 in [1]_
# compute test statistic w distributed asympt. as chisquare with df=r
g_diff = np.mean(gx, axis=0) - np.mean(gy, axis=0)
w = n*np.dot(g_diff.T, np.dot(est_cov_inv, g_diff))
# apply small-sample correction
if (max(nx, ny) < 25):
corr = 1.0/(1.0 + n**(-0.45) + 10.1*(nx**(-1.7) + ny**(-1.7)))
w = corr * w
p = chi2.sf(w, r)
return Epps_Singleton_2sampResult(w, p)