1498 lines
51 KiB
Python
1498 lines
51 KiB
Python
"""
|
|
The arraypad module contains a group of functions to pad values onto the edges
|
|
of an n-dimensional array.
|
|
|
|
"""
|
|
from __future__ import division, absolute_import, print_function
|
|
|
|
import numpy as np
|
|
|
|
|
|
__all__ = ['pad']
|
|
|
|
|
|
###############################################################################
|
|
# Private utility functions.
|
|
|
|
|
|
def _arange_ndarray(arr, shape, axis, reverse=False):
|
|
"""
|
|
Create an ndarray of `shape` with increments along specified `axis`
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
shape : tuple of ints
|
|
Shape of desired array. Should be equivalent to `arr.shape` except
|
|
`shape[axis]` which may have any positive value.
|
|
axis : int
|
|
Axis to increment along.
|
|
reverse : bool
|
|
If False, increment in a positive fashion from 1 to `shape[axis]`,
|
|
inclusive. If True, the bounds are the same but the order reversed.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array sized to pad `arr` along `axis`, with linear range from
|
|
1 to `shape[axis]` along specified `axis`.
|
|
|
|
Notes
|
|
-----
|
|
The range is deliberately 1-indexed for this specific use case. Think of
|
|
this algorithm as broadcasting `np.arange` to a single `axis` of an
|
|
arbitrarily shaped ndarray.
|
|
|
|
"""
|
|
initshape = tuple(1 if i != axis else shape[axis]
|
|
for (i, x) in enumerate(arr.shape))
|
|
if not reverse:
|
|
padarr = np.arange(1, shape[axis] + 1)
|
|
else:
|
|
padarr = np.arange(shape[axis], 0, -1)
|
|
padarr = padarr.reshape(initshape)
|
|
for i, dim in enumerate(shape):
|
|
if padarr.shape[i] != dim:
|
|
padarr = padarr.repeat(dim, axis=i)
|
|
return padarr
|
|
|
|
|
|
def _round_ifneeded(arr, dtype):
|
|
"""
|
|
Rounds arr inplace if destination dtype is integer.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array.
|
|
dtype : dtype
|
|
The dtype of the destination array.
|
|
|
|
"""
|
|
if np.issubdtype(dtype, np.integer):
|
|
arr.round(out=arr)
|
|
|
|
|
|
def _prepend_const(arr, pad_amt, val, axis=-1):
|
|
"""
|
|
Prepend constant `val` along `axis` of `arr`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to prepend.
|
|
val : scalar
|
|
Constant value to use. For best results should be of type `arr.dtype`;
|
|
if not `arr.dtype` will be cast to `arr.dtype`.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` constant `val` prepended along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
padshape = tuple(x if i != axis else pad_amt
|
|
for (i, x) in enumerate(arr.shape))
|
|
if val == 0:
|
|
return np.concatenate((np.zeros(padshape, dtype=arr.dtype), arr),
|
|
axis=axis)
|
|
else:
|
|
return np.concatenate(((np.zeros(padshape) + val).astype(arr.dtype),
|
|
arr), axis=axis)
|
|
|
|
|
|
def _append_const(arr, pad_amt, val, axis=-1):
|
|
"""
|
|
Append constant `val` along `axis` of `arr`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to append.
|
|
val : scalar
|
|
Constant value to use. For best results should be of type `arr.dtype`;
|
|
if not `arr.dtype` will be cast to `arr.dtype`.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` constant `val` appended along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
padshape = tuple(x if i != axis else pad_amt
|
|
for (i, x) in enumerate(arr.shape))
|
|
if val == 0:
|
|
return np.concatenate((arr, np.zeros(padshape, dtype=arr.dtype)),
|
|
axis=axis)
|
|
else:
|
|
return np.concatenate(
|
|
(arr, (np.zeros(padshape) + val).astype(arr.dtype)), axis=axis)
|
|
|
|
|
|
def _prepend_edge(arr, pad_amt, axis=-1):
|
|
"""
|
|
Prepend `pad_amt` to `arr` along `axis` by extending edge values.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to prepend.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, extended by `pad_amt` edge values appended along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
edge_slice = tuple(slice(None) if i != axis else 0
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
edge_arr = arr[edge_slice].reshape(pad_singleton)
|
|
return np.concatenate((edge_arr.repeat(pad_amt, axis=axis), arr),
|
|
axis=axis)
|
|
|
|
|
|
def _append_edge(arr, pad_amt, axis=-1):
|
|
"""
|
|
Append `pad_amt` to `arr` along `axis` by extending edge values.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to append.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, extended by `pad_amt` edge values prepended along
|
|
`axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
edge_slice = tuple(slice(None) if i != axis else arr.shape[axis] - 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
edge_arr = arr[edge_slice].reshape(pad_singleton)
|
|
return np.concatenate((arr, edge_arr.repeat(pad_amt, axis=axis)),
|
|
axis=axis)
|
|
|
|
|
|
def _prepend_ramp(arr, pad_amt, end, axis=-1):
|
|
"""
|
|
Prepend linear ramp along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to prepend.
|
|
end : scalar
|
|
Constal value to use. For best results should be of type `arr.dtype`;
|
|
if not `arr.dtype` will be cast to `arr.dtype`.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values prepended along `axis`. The
|
|
prepended region ramps linearly from the edge value to `end`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Generate shape for final concatenated array
|
|
padshape = tuple(x if i != axis else pad_amt
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Generate an n-dimensional array incrementing along `axis`
|
|
ramp_arr = _arange_ndarray(arr, padshape, axis,
|
|
reverse=True).astype(np.float64)
|
|
|
|
# Appropriate slicing to extract n-dimensional edge along `axis`
|
|
edge_slice = tuple(slice(None) if i != axis else 0
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract edge, reshape to original rank, and extend along `axis`
|
|
edge_pad = arr[edge_slice].reshape(pad_singleton).repeat(pad_amt, axis)
|
|
|
|
# Linear ramp
|
|
slope = (end - edge_pad) / float(pad_amt)
|
|
ramp_arr = ramp_arr * slope
|
|
ramp_arr += edge_pad
|
|
_round_ifneeded(ramp_arr, arr.dtype)
|
|
|
|
# Ramp values will most likely be float, cast them to the same type as arr
|
|
return np.concatenate((ramp_arr.astype(arr.dtype), arr), axis=axis)
|
|
|
|
|
|
def _append_ramp(arr, pad_amt, end, axis=-1):
|
|
"""
|
|
Append linear ramp along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to append.
|
|
end : scalar
|
|
Constal value to use. For best results should be of type `arr.dtype`;
|
|
if not `arr.dtype` will be cast to `arr.dtype`.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values appended along `axis`. The
|
|
appended region ramps linearly from the edge value to `end`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Generate shape for final concatenated array
|
|
padshape = tuple(x if i != axis else pad_amt
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Generate an n-dimensional array incrementing along `axis`
|
|
ramp_arr = _arange_ndarray(arr, padshape, axis,
|
|
reverse=False).astype(np.float64)
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
edge_slice = tuple(slice(None) if i != axis else -1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract edge, reshape to original rank, and extend along `axis`
|
|
edge_pad = arr[edge_slice].reshape(pad_singleton).repeat(pad_amt, axis)
|
|
|
|
# Linear ramp
|
|
slope = (end - edge_pad) / float(pad_amt)
|
|
ramp_arr = ramp_arr * slope
|
|
ramp_arr += edge_pad
|
|
_round_ifneeded(ramp_arr, arr.dtype)
|
|
|
|
# Ramp values will most likely be float, cast them to the same type as arr
|
|
return np.concatenate((arr, ramp_arr.astype(arr.dtype)), axis=axis)
|
|
|
|
|
|
def _prepend_max(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Prepend `pad_amt` maximum values along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to prepend.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate maximum.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values appended along `axis`. The
|
|
prepended region is the maximum of the first `num` values along
|
|
`axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _prepend_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
max_slice = tuple(slice(None) if i != axis else slice(num)
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate max, reshape to add singleton dimension back
|
|
max_chunk = arr[max_slice].max(axis=axis).reshape(pad_singleton)
|
|
|
|
# Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate((max_chunk.repeat(pad_amt, axis=axis), arr),
|
|
axis=axis)
|
|
|
|
|
|
def _append_max(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Pad one `axis` of `arr` with the maximum of the last `num` elements.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to append.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate maximum.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values appended along `axis`. The
|
|
appended region is the maximum of the final `num` values along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _append_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
end = arr.shape[axis] - 1
|
|
if num is not None:
|
|
max_slice = tuple(
|
|
slice(None) if i != axis else slice(end, end - num, -1)
|
|
for (i, x) in enumerate(arr.shape))
|
|
else:
|
|
max_slice = tuple(slice(None) for x in arr.shape)
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate max, reshape to add singleton dimension back
|
|
max_chunk = arr[max_slice].max(axis=axis).reshape(pad_singleton)
|
|
|
|
# Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate((arr, max_chunk.repeat(pad_amt, axis=axis)),
|
|
axis=axis)
|
|
|
|
|
|
def _prepend_mean(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Prepend `pad_amt` mean values along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to prepend.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate mean.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values prepended along `axis`. The
|
|
prepended region is the mean of the first `num` values along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _prepend_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
mean_slice = tuple(slice(None) if i != axis else slice(num)
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate mean, reshape to add singleton dimension back
|
|
mean_chunk = arr[mean_slice].mean(axis).reshape(pad_singleton)
|
|
_round_ifneeded(mean_chunk, arr.dtype)
|
|
|
|
# Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate((mean_chunk.repeat(pad_amt, axis).astype(arr.dtype),
|
|
arr), axis=axis)
|
|
|
|
|
|
def _append_mean(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Append `pad_amt` mean values along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to append.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate mean.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values appended along `axis`. The
|
|
appended region is the maximum of the final `num` values along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _append_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
end = arr.shape[axis] - 1
|
|
if num is not None:
|
|
mean_slice = tuple(
|
|
slice(None) if i != axis else slice(end, end - num, -1)
|
|
for (i, x) in enumerate(arr.shape))
|
|
else:
|
|
mean_slice = tuple(slice(None) for x in arr.shape)
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate mean, reshape to add singleton dimension back
|
|
mean_chunk = arr[mean_slice].mean(axis=axis).reshape(pad_singleton)
|
|
_round_ifneeded(mean_chunk, arr.dtype)
|
|
|
|
# Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate(
|
|
(arr, mean_chunk.repeat(pad_amt, axis).astype(arr.dtype)), axis=axis)
|
|
|
|
|
|
def _prepend_med(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Prepend `pad_amt` median values along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to prepend.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate median.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values prepended along `axis`. The
|
|
prepended region is the median of the first `num` values along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _prepend_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
med_slice = tuple(slice(None) if i != axis else slice(num)
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate median, reshape to add singleton dimension back
|
|
med_chunk = np.median(arr[med_slice], axis=axis).reshape(pad_singleton)
|
|
_round_ifneeded(med_chunk, arr.dtype)
|
|
|
|
# Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate(
|
|
(med_chunk.repeat(pad_amt, axis).astype(arr.dtype), arr), axis=axis)
|
|
|
|
|
|
def _append_med(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Append `pad_amt` median values along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to append.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate median.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values appended along `axis`. The
|
|
appended region is the median of the final `num` values along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _append_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
end = arr.shape[axis] - 1
|
|
if num is not None:
|
|
med_slice = tuple(
|
|
slice(None) if i != axis else slice(end, end - num, -1)
|
|
for (i, x) in enumerate(arr.shape))
|
|
else:
|
|
med_slice = tuple(slice(None) for x in arr.shape)
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate median, reshape to add singleton dimension back
|
|
med_chunk = np.median(arr[med_slice], axis=axis).reshape(pad_singleton)
|
|
_round_ifneeded(med_chunk, arr.dtype)
|
|
|
|
# Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate(
|
|
(arr, med_chunk.repeat(pad_amt, axis).astype(arr.dtype)), axis=axis)
|
|
|
|
|
|
def _prepend_min(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Prepend `pad_amt` minimum values along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to prepend.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate minimum.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values prepended along `axis`. The
|
|
prepended region is the minimum of the first `num` values along
|
|
`axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _prepend_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
min_slice = tuple(slice(None) if i != axis else slice(num)
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate min, reshape to add singleton dimension back
|
|
min_chunk = arr[min_slice].min(axis=axis).reshape(pad_singleton)
|
|
|
|
# Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate((min_chunk.repeat(pad_amt, axis=axis), arr),
|
|
axis=axis)
|
|
|
|
|
|
def _append_min(arr, pad_amt, num, axis=-1):
|
|
"""
|
|
Append `pad_amt` median values along `axis`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : int
|
|
Amount of padding to append.
|
|
num : int
|
|
Depth into `arr` along `axis` to calculate minimum.
|
|
Range: [1, `arr.shape[axis]`] or None (entire axis)
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt` values appended along `axis`. The
|
|
appended region is the minimum of the final `num` values along `axis`.
|
|
|
|
"""
|
|
if pad_amt == 0:
|
|
return arr
|
|
|
|
# Equivalent to edge padding for single value, so do that instead
|
|
if num == 1:
|
|
return _append_edge(arr, pad_amt, axis)
|
|
|
|
# Use entire array if `num` is too large
|
|
if num is not None:
|
|
if num >= arr.shape[axis]:
|
|
num = None
|
|
|
|
# Slice a chunk from the edge to calculate stats on
|
|
end = arr.shape[axis] - 1
|
|
if num is not None:
|
|
min_slice = tuple(
|
|
slice(None) if i != axis else slice(end, end - num, -1)
|
|
for (i, x) in enumerate(arr.shape))
|
|
else:
|
|
min_slice = tuple(slice(None) for x in arr.shape)
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
# Extract slice, calculate min, reshape to add singleton dimension back
|
|
min_chunk = arr[min_slice].min(axis=axis).reshape(pad_singleton)
|
|
|
|
# Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt`
|
|
return np.concatenate((arr, min_chunk.repeat(pad_amt, axis=axis)),
|
|
axis=axis)
|
|
|
|
|
|
def _pad_ref(arr, pad_amt, method, axis=-1):
|
|
"""
|
|
Pad `axis` of `arr` by reflection.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : tuple of ints, length 2
|
|
Padding to (prepend, append) along `axis`.
|
|
method : str
|
|
Controls method of reflection; options are 'even' or 'odd'.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt[0]` values prepended and `pad_amt[1]`
|
|
values appended along `axis`. Both regions are padded with reflected
|
|
values from the original array.
|
|
|
|
Notes
|
|
-----
|
|
This algorithm does not pad with repetition, i.e. the edges are not
|
|
repeated in the reflection. For that behavior, use `mode='symmetric'`.
|
|
|
|
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
|
|
single function, lest the indexing tricks in non-integer multiples of the
|
|
original shape would violate repetition in the final iteration.
|
|
|
|
"""
|
|
# Implicit booleanness to test for zero (or None) in any scalar type
|
|
if pad_amt[0] == 0 and pad_amt[1] == 0:
|
|
return arr
|
|
|
|
##########################################################################
|
|
# Prepended region
|
|
|
|
# Slice off a reverse indexed chunk from near edge to pad `arr` before
|
|
ref_slice = tuple(slice(None) if i != axis else slice(pad_amt[0], 0, -1)
|
|
for (i, x) in enumerate(arr.shape))
|
|
|
|
ref_chunk1 = arr[ref_slice]
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
if pad_amt[0] == 1:
|
|
ref_chunk1 = ref_chunk1.reshape(pad_singleton)
|
|
|
|
# Memory/computationally more expensive, only do this if `method='odd'`
|
|
if 'odd' in method and pad_amt[0] > 0:
|
|
edge_slice1 = tuple(slice(None) if i != axis else 0
|
|
for (i, x) in enumerate(arr.shape))
|
|
edge_chunk = arr[edge_slice1].reshape(pad_singleton)
|
|
ref_chunk1 = 2 * edge_chunk - ref_chunk1
|
|
del edge_chunk
|
|
|
|
##########################################################################
|
|
# Appended region
|
|
|
|
# Slice off a reverse indexed chunk from far edge to pad `arr` after
|
|
start = arr.shape[axis] - pad_amt[1] - 1
|
|
end = arr.shape[axis] - 1
|
|
ref_slice = tuple(slice(None) if i != axis else slice(start, end)
|
|
for (i, x) in enumerate(arr.shape))
|
|
rev_idx = tuple(slice(None) if i != axis else slice(None, None, -1)
|
|
for (i, x) in enumerate(arr.shape))
|
|
ref_chunk2 = arr[ref_slice][rev_idx]
|
|
|
|
if pad_amt[1] == 1:
|
|
ref_chunk2 = ref_chunk2.reshape(pad_singleton)
|
|
|
|
if 'odd' in method:
|
|
edge_slice2 = tuple(slice(None) if i != axis else -1
|
|
for (i, x) in enumerate(arr.shape))
|
|
edge_chunk = arr[edge_slice2].reshape(pad_singleton)
|
|
ref_chunk2 = 2 * edge_chunk - ref_chunk2
|
|
del edge_chunk
|
|
|
|
# Concatenate `arr` with both chunks, extending along `axis`
|
|
return np.concatenate((ref_chunk1, arr, ref_chunk2), axis=axis)
|
|
|
|
|
|
def _pad_sym(arr, pad_amt, method, axis=-1):
|
|
"""
|
|
Pad `axis` of `arr` by symmetry.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : tuple of ints, length 2
|
|
Padding to (prepend, append) along `axis`.
|
|
method : str
|
|
Controls method of symmetry; options are 'even' or 'odd'.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt[0]` values prepended and `pad_amt[1]`
|
|
values appended along `axis`. Both regions are padded with symmetric
|
|
values from the original array.
|
|
|
|
Notes
|
|
-----
|
|
This algorithm DOES pad with repetition, i.e. the edges are repeated.
|
|
For padding without repeated edges, use `mode='reflect'`.
|
|
|
|
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
|
|
single function, lest the indexing tricks in non-integer multiples of the
|
|
original shape would violate repetition in the final iteration.
|
|
|
|
"""
|
|
# Implicit booleanness to test for zero (or None) in any scalar type
|
|
if pad_amt[0] == 0 and pad_amt[1] == 0:
|
|
return arr
|
|
|
|
##########################################################################
|
|
# Prepended region
|
|
|
|
# Slice off a reverse indexed chunk from near edge to pad `arr` before
|
|
sym_slice = tuple(slice(None) if i != axis else slice(0, pad_amt[0])
|
|
for (i, x) in enumerate(arr.shape))
|
|
rev_idx = tuple(slice(None) if i != axis else slice(None, None, -1)
|
|
for (i, x) in enumerate(arr.shape))
|
|
sym_chunk1 = arr[sym_slice][rev_idx]
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
if pad_amt[0] == 1:
|
|
sym_chunk1 = sym_chunk1.reshape(pad_singleton)
|
|
|
|
# Memory/computationally more expensive, only do this if `method='odd'`
|
|
if 'odd' in method and pad_amt[0] > 0:
|
|
edge_slice1 = tuple(slice(None) if i != axis else 0
|
|
for (i, x) in enumerate(arr.shape))
|
|
edge_chunk = arr[edge_slice1].reshape(pad_singleton)
|
|
sym_chunk1 = 2 * edge_chunk - sym_chunk1
|
|
del edge_chunk
|
|
|
|
##########################################################################
|
|
# Appended region
|
|
|
|
# Slice off a reverse indexed chunk from far edge to pad `arr` after
|
|
start = arr.shape[axis] - pad_amt[1]
|
|
end = arr.shape[axis]
|
|
sym_slice = tuple(slice(None) if i != axis else slice(start, end)
|
|
for (i, x) in enumerate(arr.shape))
|
|
sym_chunk2 = arr[sym_slice][rev_idx]
|
|
|
|
if pad_amt[1] == 1:
|
|
sym_chunk2 = sym_chunk2.reshape(pad_singleton)
|
|
|
|
if 'odd' in method:
|
|
edge_slice2 = tuple(slice(None) if i != axis else -1
|
|
for (i, x) in enumerate(arr.shape))
|
|
edge_chunk = arr[edge_slice2].reshape(pad_singleton)
|
|
sym_chunk2 = 2 * edge_chunk - sym_chunk2
|
|
del edge_chunk
|
|
|
|
# Concatenate `arr` with both chunks, extending along `axis`
|
|
return np.concatenate((sym_chunk1, arr, sym_chunk2), axis=axis)
|
|
|
|
|
|
def _pad_wrap(arr, pad_amt, axis=-1):
|
|
"""
|
|
Pad `axis` of `arr` via wrapping.
|
|
|
|
Parameters
|
|
----------
|
|
arr : ndarray
|
|
Input array of arbitrary shape.
|
|
pad_amt : tuple of ints, length 2
|
|
Padding to (prepend, append) along `axis`.
|
|
axis : int
|
|
Axis along which to pad `arr`.
|
|
|
|
Returns
|
|
-------
|
|
padarr : ndarray
|
|
Output array, with `pad_amt[0]` values prepended and `pad_amt[1]`
|
|
values appended along `axis`. Both regions are padded wrapped values
|
|
from the opposite end of `axis`.
|
|
|
|
Notes
|
|
-----
|
|
This method of padding is also known as 'tile' or 'tiling'.
|
|
|
|
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
|
|
single function, lest the indexing tricks in non-integer multiples of the
|
|
original shape would violate repetition in the final iteration.
|
|
|
|
"""
|
|
# Implicit booleanness to test for zero (or None) in any scalar type
|
|
if pad_amt[0] == 0 and pad_amt[1] == 0:
|
|
return arr
|
|
|
|
##########################################################################
|
|
# Prepended region
|
|
|
|
# Slice off a reverse indexed chunk from near edge to pad `arr` before
|
|
start = arr.shape[axis] - pad_amt[0]
|
|
end = arr.shape[axis]
|
|
wrap_slice = tuple(slice(None) if i != axis else slice(start, end)
|
|
for (i, x) in enumerate(arr.shape))
|
|
wrap_chunk1 = arr[wrap_slice]
|
|
|
|
# Shape to restore singleton dimension after slicing
|
|
pad_singleton = tuple(x if i != axis else 1
|
|
for (i, x) in enumerate(arr.shape))
|
|
if pad_amt[0] == 1:
|
|
wrap_chunk1 = wrap_chunk1.reshape(pad_singleton)
|
|
|
|
##########################################################################
|
|
# Appended region
|
|
|
|
# Slice off a reverse indexed chunk from far edge to pad `arr` after
|
|
wrap_slice = tuple(slice(None) if i != axis else slice(0, pad_amt[1])
|
|
for (i, x) in enumerate(arr.shape))
|
|
wrap_chunk2 = arr[wrap_slice]
|
|
|
|
if pad_amt[1] == 1:
|
|
wrap_chunk2 = wrap_chunk2.reshape(pad_singleton)
|
|
|
|
# Concatenate `arr` with both chunks, extending along `axis`
|
|
return np.concatenate((wrap_chunk1, arr, wrap_chunk2), axis=axis)
|
|
|
|
|
|
def _normalize_shape(ndarray, shape, cast_to_int=True):
|
|
"""
|
|
Private function which does some checks and normalizes the possibly
|
|
much simpler representations of 'pad_width', 'stat_length',
|
|
'constant_values', 'end_values'.
|
|
|
|
Parameters
|
|
----------
|
|
narray : ndarray
|
|
Input ndarray
|
|
shape : {sequence, array_like, float, int}, optional
|
|
The width of padding (pad_width), the number of elements on the
|
|
edge of the narray used for statistics (stat_length), the constant
|
|
value(s) to use when filling padded regions (constant_values), or the
|
|
endpoint target(s) for linear ramps (end_values).
|
|
((before_1, after_1), ... (before_N, after_N)) unique number of
|
|
elements for each axis where `N` is rank of `narray`.
|
|
((before, after),) yields same before and after constants for each
|
|
axis.
|
|
(constant,) or val is a shortcut for before = after = constant for
|
|
all axes.
|
|
cast_to_int : bool, optional
|
|
Controls if values in ``shape`` will be rounded and cast to int
|
|
before being returned.
|
|
|
|
Returns
|
|
-------
|
|
normalized_shape : tuple of tuples
|
|
val => ((val, val), (val, val), ...)
|
|
[[val1, val2], [val3, val4], ...] => ((val1, val2), (val3, val4), ...)
|
|
((val1, val2), (val3, val4), ...) => no change
|
|
[[val1, val2], ] => ((val1, val2), (val1, val2), ...)
|
|
((val1, val2), ) => ((val1, val2), (val1, val2), ...)
|
|
[[val , ], ] => ((val, val), (val, val), ...)
|
|
((val , ), ) => ((val, val), (val, val), ...)
|
|
|
|
"""
|
|
ndims = ndarray.ndim
|
|
|
|
# Shortcut shape=None
|
|
if shape is None:
|
|
return ((None, None), ) * ndims
|
|
|
|
# Convert any input `info` to a NumPy array
|
|
arr = np.asarray(shape)
|
|
|
|
# Switch based on what input looks like
|
|
if arr.ndim <= 1:
|
|
if arr.shape == () or arr.shape == (1,): # Single scalar input
|
|
# Create new array of ones, multiply by the scalar
|
|
arr = np.ones((ndims, 2), dtype=ndarray.dtype) * arr
|
|
elif arr.shape == (2,): # Apply padding (before, after) each axis
|
|
# Create new axis 0, repeat along it for every axis
|
|
arr = arr[np.newaxis, :].repeat(ndims, axis=0)
|
|
else:
|
|
fmt = "Unable to create correctly shaped tuple from %s"
|
|
raise ValueError(fmt % (shape,))
|
|
|
|
elif arr.ndim == 2:
|
|
if arr.shape[1] == 1 and arr.shape[0] == ndims:
|
|
# Padded before and after by the same amount
|
|
arr = arr.repeat(2, axis=1)
|
|
elif arr.shape[0] == ndims:
|
|
# Input correctly formatted, pass it on as `arr`
|
|
arr = shape
|
|
else:
|
|
fmt = "Unable to create correctly shaped tuple from %s"
|
|
raise ValueError(fmt % (shape,))
|
|
|
|
else:
|
|
fmt = "Unable to create correctly shaped tuple from %s"
|
|
raise ValueError(fmt % (shape,))
|
|
|
|
# Cast if necessary
|
|
if cast_to_int is True:
|
|
arr = np.round(arr).astype(int)
|
|
|
|
# Convert list of lists to tuple of tuples
|
|
return tuple(tuple(axis) for axis in arr.tolist())
|
|
|
|
|
|
def _validate_lengths(narray, number_elements):
|
|
"""
|
|
Private function which does some checks and reformats pad_width and
|
|
stat_length using _normalize_shape.
|
|
|
|
Parameters
|
|
----------
|
|
narray : ndarray
|
|
Input ndarray
|
|
number_elements : {sequence, int}, optional
|
|
The width of padding (pad_width) or the number of elements on the edge
|
|
of the narray used for statistics (stat_length).
|
|
((before_1, after_1), ... (before_N, after_N)) unique number of
|
|
elements for each axis.
|
|
((before, after),) yields same before and after constants for each
|
|
axis.
|
|
(constant,) or int is a shortcut for before = after = constant for all
|
|
axes.
|
|
|
|
Returns
|
|
-------
|
|
_validate_lengths : tuple of tuples
|
|
int => ((int, int), (int, int), ...)
|
|
[[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...)
|
|
((int1, int2), (int3, int4), ...) => no change
|
|
[[int1, int2], ] => ((int1, int2), (int1, int2), ...)
|
|
((int1, int2), ) => ((int1, int2), (int1, int2), ...)
|
|
[[int , ], ] => ((int, int), (int, int), ...)
|
|
((int , ), ) => ((int, int), (int, int), ...)
|
|
|
|
"""
|
|
normshp = _normalize_shape(narray, number_elements)
|
|
for i in normshp:
|
|
chk = [1 if x is None else x for x in i]
|
|
chk = [1 if x >= 0 else -1 for x in chk]
|
|
if (chk[0] < 0) or (chk[1] < 0):
|
|
fmt = "%s cannot contain negative values."
|
|
raise ValueError(fmt % (number_elements,))
|
|
return normshp
|
|
|
|
|
|
###############################################################################
|
|
# Public functions
|
|
|
|
|
|
def pad(array, pad_width, mode=None, **kwargs):
|
|
"""
|
|
Pads an array.
|
|
|
|
Parameters
|
|
----------
|
|
array : array_like of rank N
|
|
Input array
|
|
pad_width : {sequence, array_like, int}
|
|
Number of values padded to the edges of each axis.
|
|
((before_1, after_1), ... (before_N, after_N)) unique pad widths
|
|
for each axis.
|
|
((before, after),) yields same before and after pad for each axis.
|
|
(pad,) or int is a shortcut for before = after = pad width for all
|
|
axes.
|
|
mode : str or function
|
|
One of the following string values or a user supplied function.
|
|
|
|
'constant'
|
|
Pads with a constant value.
|
|
'edge'
|
|
Pads with the edge values of array.
|
|
'linear_ramp'
|
|
Pads with the linear ramp between end_value and the
|
|
array edge value.
|
|
'maximum'
|
|
Pads with the maximum value of all or part of the
|
|
vector along each axis.
|
|
'mean'
|
|
Pads with the mean value of all or part of the
|
|
vector along each axis.
|
|
'median'
|
|
Pads with the median value of all or part of the
|
|
vector along each axis.
|
|
'minimum'
|
|
Pads with the minimum value of all or part of the
|
|
vector along each axis.
|
|
'reflect'
|
|
Pads with the reflection of the vector mirrored on
|
|
the first and last values of the vector along each
|
|
axis.
|
|
'symmetric'
|
|
Pads with the reflection of the vector mirrored
|
|
along the edge of the array.
|
|
'wrap'
|
|
Pads with the wrap of the vector along the axis.
|
|
The first values are used to pad the end and the
|
|
end values are used to pad the beginning.
|
|
<function>
|
|
Padding function, see Notes.
|
|
stat_length : sequence or int, optional
|
|
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
|
|
values at edge of each axis used to calculate the statistic value.
|
|
|
|
((before_1, after_1), ... (before_N, after_N)) unique statistic
|
|
lengths for each axis.
|
|
|
|
((before, after),) yields same before and after statistic lengths
|
|
for each axis.
|
|
|
|
(stat_length,) or int is a shortcut for before = after = statistic
|
|
length for all axes.
|
|
|
|
Default is ``None``, to use the entire axis.
|
|
constant_values : sequence or int, optional
|
|
Used in 'constant'. The values to set the padded values for each
|
|
axis.
|
|
|
|
((before_1, after_1), ... (before_N, after_N)) unique pad constants
|
|
for each axis.
|
|
|
|
((before, after),) yields same before and after constants for each
|
|
axis.
|
|
|
|
(constant,) or int is a shortcut for before = after = constant for
|
|
all axes.
|
|
|
|
Default is 0.
|
|
end_values : sequence or int, optional
|
|
Used in 'linear_ramp'. The values used for the ending value of the
|
|
linear_ramp and that will form the edge of the padded array.
|
|
|
|
((before_1, after_1), ... (before_N, after_N)) unique end values
|
|
for each axis.
|
|
|
|
((before, after),) yields same before and after end values for each
|
|
axis.
|
|
|
|
(constant,) or int is a shortcut for before = after = end value for
|
|
all axes.
|
|
|
|
Default is 0.
|
|
reflect_type : {'even', 'odd'}, optional
|
|
Used in 'reflect', and 'symmetric'. The 'even' style is the
|
|
default with an unaltered reflection around the edge value. For
|
|
the 'odd' style, the extented part of the array is created by
|
|
subtracting the reflected values from two times the edge value.
|
|
|
|
Returns
|
|
-------
|
|
pad : ndarray
|
|
Padded array of rank equal to `array` with shape increased
|
|
according to `pad_width`.
|
|
|
|
Notes
|
|
-----
|
|
This function exists in NumPy >= 1.7.0, but is included in
|
|
``scikit-fuzzy`` for backwards compatibility with earlier versions.
|
|
|
|
For an array with rank greater than 1, some of the padding of later
|
|
axes is calculated from padding of previous axes. This is easiest to
|
|
think about with a rank 2 array where the corners of the padded array
|
|
are calculated by using padded values from the first axis.
|
|
|
|
The padding function, if used, should return a rank 1 array equal in
|
|
length to the vector argument with padded values replaced. It has the
|
|
following signature::
|
|
|
|
padding_func(vector, iaxis_pad_width, iaxis, **kwargs)
|
|
|
|
where
|
|
|
|
vector : ndarray
|
|
A rank 1 array already padded with zeros. Padded values are
|
|
vector[:pad_tuple[0]] and vector[-pad_tuple[1]:].
|
|
iaxis_pad_width : tuple
|
|
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
|
|
values padded at the beginning of vector where
|
|
iaxis_pad_width[1] represents the number of values padded at
|
|
the end of vector.
|
|
iaxis : int
|
|
The axis currently being calculated.
|
|
kwargs : misc
|
|
Any keyword arguments the function requires.
|
|
|
|
Examples
|
|
--------
|
|
>>> import skfuzzy as fuzz
|
|
>>> a = [1, 2, 3, 4, 5]
|
|
>>> fuzz.pad(a, (2,3), 'constant', constant_values=(4, 6))
|
|
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
|
|
|
|
>>> fuzz.pad(a, (2, 3), 'edge')
|
|
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
|
|
|
|
>>> fuzz.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
|
|
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
|
|
|
|
>>> fuzz.pad(a, (2,), 'maximum')
|
|
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
|
|
|
|
>>> fuzz.pad(a, (2,), 'mean')
|
|
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
|
|
|
|
>>> fuzz.pad(a, (2,), 'median')
|
|
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
|
|
|
|
>>> a = [[1, 2], [3, 4]]
|
|
>>> fuzz.pad(a, ((3, 2), (2, 3)), 'minimum')
|
|
array([[1, 1, 1, 2, 1, 1, 1],
|
|
[1, 1, 1, 2, 1, 1, 1],
|
|
[1, 1, 1, 2, 1, 1, 1],
|
|
[1, 1, 1, 2, 1, 1, 1],
|
|
[3, 3, 3, 4, 3, 3, 3],
|
|
[1, 1, 1, 2, 1, 1, 1],
|
|
[1, 1, 1, 2, 1, 1, 1]])
|
|
|
|
>>> a = [1, 2, 3, 4, 5]
|
|
>>> fuzz.pad(a, (2, 3), 'reflect')
|
|
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
|
|
|
|
>>> fuzz.pad(a, (2, 3), 'reflect', reflect_type='odd')
|
|
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
|
|
|
|
>>> fuzz.pad(a, (2, 3), 'symmetric')
|
|
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
|
|
|
|
>>> fuzz.pad(a, (2, 3), 'symmetric', reflect_type='odd')
|
|
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
|
|
|
|
>>> fuzz.pad(a, (2, 3), 'wrap')
|
|
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
|
|
|
|
>>> def padwithtens(vector, pad_width, iaxis, kwargs):
|
|
... vector[:pad_width[0]] = 10
|
|
... vector[-pad_width[1]:] = 10
|
|
... return vector
|
|
|
|
>>> a = np.arange(6)
|
|
>>> a = a.reshape((2, 3))
|
|
|
|
>>> fuzz.pad(a, 2, padwithtens)
|
|
array([[10, 10, 10, 10, 10, 10, 10],
|
|
[10, 10, 10, 10, 10, 10, 10],
|
|
[10, 10, 0, 1, 2, 10, 10],
|
|
[10, 10, 3, 4, 5, 10, 10],
|
|
[10, 10, 10, 10, 10, 10, 10],
|
|
[10, 10, 10, 10, 10, 10, 10]])
|
|
"""
|
|
if not np.asarray(pad_width).dtype.kind == 'i':
|
|
raise TypeError('`pad_width` must be of integral type.')
|
|
|
|
narray = np.array(array)
|
|
pad_width = _validate_lengths(narray, pad_width)
|
|
|
|
allowedkwargs = {
|
|
'constant': ['constant_values'],
|
|
'edge': [],
|
|
'linear_ramp': ['end_values'],
|
|
'maximum': ['stat_length'],
|
|
'mean': ['stat_length'],
|
|
'median': ['stat_length'],
|
|
'minimum': ['stat_length'],
|
|
'reflect': ['reflect_type'],
|
|
'symmetric': ['reflect_type'],
|
|
'wrap': [],
|
|
}
|
|
|
|
kwdefaults = {
|
|
'stat_length': None,
|
|
'constant_values': 0,
|
|
'end_values': 0,
|
|
'reflect_type': 'even',
|
|
}
|
|
|
|
if isinstance(mode, str):
|
|
# Make sure have allowed kwargs appropriate for mode
|
|
for key in kwargs:
|
|
if key not in allowedkwargs[mode]:
|
|
raise ValueError('%s keyword not in allowed keywords %s' %
|
|
(key, allowedkwargs[mode]))
|
|
|
|
# Set kwarg defaults
|
|
for kw in allowedkwargs[mode]:
|
|
kwargs.setdefault(kw, kwdefaults[kw])
|
|
|
|
# Need to only normalize particular keywords.
|
|
for i in kwargs:
|
|
if i == 'stat_length':
|
|
kwargs[i] = _validate_lengths(narray, kwargs[i])
|
|
if i in ['end_values', 'constant_values']:
|
|
kwargs[i] = _normalize_shape(narray, kwargs[i],
|
|
cast_to_int=False)
|
|
elif mode is None:
|
|
raise ValueError('Keyword "mode" must be a function or one of %s.' %
|
|
(list(allowedkwargs.keys()),))
|
|
else:
|
|
# Drop back to old, slower np.apply_along_axis mode for user-supplied
|
|
# vector function
|
|
function = mode
|
|
|
|
# Create a new padded array
|
|
rank = list(range(len(narray.shape)))
|
|
total_dim_increase = [np.sum(pad_width[i]) for i in rank]
|
|
offset_slices = [slice(pad_width[i][0],
|
|
pad_width[i][0] + narray.shape[i])
|
|
for i in rank]
|
|
new_shape = np.array(narray.shape) + total_dim_increase
|
|
newmat = np.zeros(new_shape, narray.dtype)
|
|
|
|
# Insert the original array into the padded array
|
|
newmat[offset_slices] = narray
|
|
|
|
# This is the core of pad ...
|
|
for iaxis in rank:
|
|
np.apply_along_axis(function,
|
|
iaxis,
|
|
newmat,
|
|
pad_width[iaxis],
|
|
iaxis,
|
|
kwargs)
|
|
return newmat
|
|
|
|
# If we get here, use new padding method
|
|
newmat = narray.copy()
|
|
|
|
# API preserved, but completely new algorithm which pads by building the
|
|
# entire block to pad before/after `arr` with in one step, for each axis.
|
|
if mode == 'constant':
|
|
for axis, ((pad_before, pad_after), (before_val, after_val)) \
|
|
in enumerate(zip(pad_width, kwargs['constant_values'])):
|
|
newmat = _prepend_const(newmat, pad_before, before_val, axis)
|
|
newmat = _append_const(newmat, pad_after, after_val, axis)
|
|
|
|
elif mode == 'edge':
|
|
for axis, (pad_before, pad_after) in enumerate(pad_width):
|
|
newmat = _prepend_edge(newmat, pad_before, axis)
|
|
newmat = _append_edge(newmat, pad_after, axis)
|
|
|
|
elif mode == 'linear_ramp':
|
|
for axis, ((pad_before, pad_after), (before_val, after_val)) \
|
|
in enumerate(zip(pad_width, kwargs['end_values'])):
|
|
newmat = _prepend_ramp(newmat, pad_before, before_val, axis)
|
|
newmat = _append_ramp(newmat, pad_after, after_val, axis)
|
|
|
|
elif mode == 'maximum':
|
|
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
|
|
in enumerate(zip(pad_width, kwargs['stat_length'])):
|
|
newmat = _prepend_max(newmat, pad_before, chunk_before, axis)
|
|
newmat = _append_max(newmat, pad_after, chunk_after, axis)
|
|
|
|
elif mode == 'mean':
|
|
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
|
|
in enumerate(zip(pad_width, kwargs['stat_length'])):
|
|
newmat = _prepend_mean(newmat, pad_before, chunk_before, axis)
|
|
newmat = _append_mean(newmat, pad_after, chunk_after, axis)
|
|
|
|
elif mode == 'median':
|
|
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
|
|
in enumerate(zip(pad_width, kwargs['stat_length'])):
|
|
newmat = _prepend_med(newmat, pad_before, chunk_before, axis)
|
|
newmat = _append_med(newmat, pad_after, chunk_after, axis)
|
|
|
|
elif mode == 'minimum':
|
|
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
|
|
in enumerate(zip(pad_width, kwargs['stat_length'])):
|
|
newmat = _prepend_min(newmat, pad_before, chunk_before, axis)
|
|
newmat = _append_min(newmat, pad_after, chunk_after, axis)
|
|
|
|
elif mode == 'reflect':
|
|
for axis, (pad_before, pad_after) in enumerate(pad_width):
|
|
# Recursive padding along any axis where `pad_amt` is too large
|
|
# for indexing tricks. We can only safely pad the original axis
|
|
# length, to keep the period of the reflections consistent.
|
|
if ((pad_before > 0) or
|
|
(pad_after > 0)) and newmat.shape[axis] == 1:
|
|
# Extending singleton dimension for 'reflect' is legacy
|
|
# behavior; it really should raise an error.
|
|
newmat = _prepend_edge(newmat, pad_before, axis)
|
|
newmat = _append_edge(newmat, pad_after, axis)
|
|
continue
|
|
|
|
method = kwargs['reflect_type']
|
|
safe_pad = newmat.shape[axis] - 1
|
|
while ((pad_before > safe_pad) or (pad_after > safe_pad)):
|
|
pad_iter_b = min(safe_pad,
|
|
safe_pad * (pad_before // safe_pad))
|
|
pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad))
|
|
newmat = _pad_ref(newmat, (pad_iter_b,
|
|
pad_iter_a), method, axis)
|
|
pad_before -= pad_iter_b
|
|
pad_after -= pad_iter_a
|
|
safe_pad += pad_iter_b + pad_iter_a
|
|
newmat = _pad_ref(newmat, (pad_before, pad_after), method, axis)
|
|
|
|
elif mode == 'symmetric':
|
|
for axis, (pad_before, pad_after) in enumerate(pad_width):
|
|
# Recursive padding along any axis where `pad_amt` is too large
|
|
# for indexing tricks. We can only safely pad the original axis
|
|
# length, to keep the period of the reflections consistent.
|
|
method = kwargs['reflect_type']
|
|
safe_pad = newmat.shape[axis]
|
|
while ((pad_before > safe_pad) or
|
|
(pad_after > safe_pad)):
|
|
pad_iter_b = min(safe_pad,
|
|
safe_pad * (pad_before // safe_pad))
|
|
pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad))
|
|
newmat = _pad_sym(newmat, (pad_iter_b,
|
|
pad_iter_a), method, axis)
|
|
pad_before -= pad_iter_b
|
|
pad_after -= pad_iter_a
|
|
safe_pad += pad_iter_b + pad_iter_a
|
|
newmat = _pad_sym(newmat, (pad_before, pad_after), method, axis)
|
|
|
|
elif mode == 'wrap':
|
|
for axis, (pad_before, pad_after) in enumerate(pad_width):
|
|
# Recursive padding along any axis where `pad_amt` is too large
|
|
# for indexing tricks. We can only safely pad the original axis
|
|
# length, to keep the period of the reflections consistent.
|
|
safe_pad = newmat.shape[axis]
|
|
while ((pad_before > safe_pad) or
|
|
(pad_after > safe_pad)):
|
|
pad_iter_b = min(safe_pad,
|
|
safe_pad * (pad_before // safe_pad))
|
|
pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad))
|
|
newmat = _pad_wrap(newmat, (pad_iter_b, pad_iter_a), axis)
|
|
|
|
pad_before -= pad_iter_b
|
|
pad_after -= pad_iter_a
|
|
safe_pad += pad_iter_b + pad_iter_a
|
|
newmat = _pad_wrap(newmat, (pad_before, pad_after), axis)
|
|
|
|
return newmat
|