36 lines
1.0 KiB
Python
36 lines
1.0 KiB
Python
|
import cv2
|
||
|
import mediapipe as mp
|
||
|
mp_drawing = mp.solutions.drawing_utils
|
||
|
mp_hands = mp.solutions.hands
|
||
|
|
||
|
hands = mp_hands.Hands(
|
||
|
min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
||
|
cap = cv2.VideoCapture(0)
|
||
|
while cap.isOpened():
|
||
|
success, image = cap.read()
|
||
|
|
||
|
# Flip the image horizontally for a later selfie-view display, and convert
|
||
|
# the BGR image to RGB.
|
||
|
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
|
||
|
# To improve performance, optionally mark the image as not writeable to
|
||
|
# pass by reference.
|
||
|
image.flags.writeable = False
|
||
|
results = hands.process(image)
|
||
|
|
||
|
|
||
|
# Draw the hand annotations on the image.
|
||
|
image.flags.writeable = True
|
||
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||
|
if results.multi_hand_landmarks:
|
||
|
for hand_landmarks in results.multi_hand_landmarks:
|
||
|
mp_drawing.draw_landmarks(
|
||
|
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
|
||
|
#print(hand_landmarks) ## spójrz na to
|
||
|
|
||
|
cv2.imshow('MediaPipe Hands', image)
|
||
|
if cv2.waitKey(5) & 0xFF == 27:
|
||
|
break
|
||
|
hands.close()
|
||
|
cap.release()
|
||
|
|