import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_hands = mp.solutions.hands from math import sqrt def calculate_distance(ax, ay, bx,by): distance = sqrt(((bx - ax) ** 2 + (by - ay) ** 2)) return distance hands = mp_hands.Hands( min_detection_confidence=0.5, min_tracking_confidence=0.5) cap = cv2.VideoCapture(0) while cap.isOpened(): success, image = cap.read() # Flip the image horizontally for a later selfie-view display, and convert # the BGR image to RGB. image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False results = hands.process(image) # Draw the hand annotations on the image.g image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( image, hand_landmarks, mp_hands.HAND_CONNECTIONS) #print(hand_landmarks) ## spĆ³jrz na to if cv2.waitKey(33) == ord('s'): if results.multi_hand_landmarks: i = 0 for hand_landmarks in results.multi_hand_landmarks: ax = hand_landmarks.landmark[8].x ay = hand_landmarks.landmark[8].y bx = hand_landmarks.landmark[5].x by = hand_landmarks.landmark[5].y odleglosc_8_5 = calculate_distance(ax,ay, bx, by) print(odleglosc_8_5) ax = hand_landmarks.landmark[5].x ay = hand_landmarks.landmark[5].y bx = hand_landmarks.landmark[0].x by = hand_landmarks.landmark[0].y odleglosc_5_0 = calculate_distance(ax, ay, bx, by) print(odleglosc_5_0) if(odleglosc_5_0 < odleglosc_8_5 + 0.1): print("wyprostowany") else: print("niewyprostowany") # i += 1 # print(hand_landmarks.) cv2.imshow('MediaPipe Hands', image) if cv2.waitKey(5) & 0xFF == 27: break hands.close() cap.release()