2022-05-23 20:19:53 +02:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torchvision.transforms as transforms
|
|
|
|
import torch.optim as optim
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from torchvision.datasets import ImageFolder
|
|
|
|
from NeuralNetwork import NeuralNetwork
|
|
|
|
|
|
|
|
# import matplotlib.pyplot as plt
|
|
|
|
# import numpy as np
|
|
|
|
# import cv2
|
|
|
|
|
|
|
|
def trainNeuralNetwork():
|
|
|
|
neural_net = NeuralNetwork()
|
|
|
|
train_set = ImageFolder(root='./resources/trash_dataset/train', transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]))
|
|
|
|
trainloader = DataLoader(
|
|
|
|
train_set, batch_size=2, shuffle=True, num_workers=2)
|
|
|
|
|
|
|
|
# potrzebne do wyświetlania loss w każdej iteracji
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
|
optimizer = optim.SGD(neural_net.parameters(), lr=0.001, momentum=0.9)
|
|
|
|
|
2022-05-26 20:55:18 +02:00
|
|
|
epoch_num = 10 # najlepiej 10, dla lepszej wiarygodności
|
2022-05-23 20:19:53 +02:00
|
|
|
for epoch in range(epoch_num):
|
|
|
|
measure_loss = 0.0
|
|
|
|
for i, data in enumerate(trainloader, 0):
|
|
|
|
inputs, labels = data
|
|
|
|
# czyszczenie gradientu f-cji
|
|
|
|
optimizer.zero_grad()
|
|
|
|
outputs = neural_net(inputs)
|
|
|
|
loss = criterion(outputs, labels)
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
measure_loss += loss.item()
|
|
|
|
if i:
|
|
|
|
print('[%d, %5d] loss: %.3f' %
|
|
|
|
(epoch + 1, i + 1, measure_loss))
|
|
|
|
measure_loss = 0.0
|
|
|
|
|
|
|
|
print('Finished.')
|
|
|
|
PATH = './trained_nn.pth'
|
|
|
|
torch.save(neural_net.state_dict(), PATH)
|
|
|
|
|
|
|
|
def main():
|
|
|
|
trainNeuralNetwork()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|
|
|
|
|