Merge branch 'genetic_algorithm'

This commit is contained in:
Kacper Kalinowski 2022-06-10 11:14:53 +02:00
commit 1bc8a26bd2
10 changed files with 591 additions and 261 deletions

View File

@ -1,3 +1,4 @@
<<<<<<< HEAD
|--- feature_2 <= 3.50
| |--- feature_4 <= 3.50
| | |--- feature_0 <= 1.50
@ -89,3 +90,96 @@
| | | |--- class: 0
| |--- feature_1 > 1.50
| | |--- class: 0
=======
|--- feature_2 <= 3.50
| |--- feature_4 <= 3.50
| | |--- feature_0 <= 1.50
| | | |--- class: 0
| | |--- feature_0 > 1.50
| | | |--- feature_3 <= 3.50
| | | | |--- feature_4 <= 2.50
| | | | | |--- class: 1
| | | | |--- feature_4 > 2.50
| | | | | |--- feature_2 <= 2.50
| | | | | | |--- class: 1
| | | | | |--- feature_2 > 2.50
| | | | | | |--- class: 0
| | | |--- feature_3 > 3.50
| | | | |--- feature_3 <= 4.50
| | | | | |--- feature_1 <= 2.50
| | | | | | |--- feature_0 <= 2.50
| | | | | | | |--- feature_1 <= 1.50
| | | | | | | | |--- feature_2 <= 2.50
| | | | | | | | | |--- class: 1
| | | | | | | | |--- feature_2 > 2.50
| | | | | | | | | |--- feature_4 <= 2.00
| | | | | | | | | | |--- class: 1
| | | | | | | | | |--- feature_4 > 2.00
| | | | | | | | | | |--- class: 0
| | | | | | | |--- feature_1 > 1.50
| | | | | | | | |--- class: 0
| | | | | | |--- feature_0 > 2.50
| | | | | | | |--- feature_2 <= 2.50
| | | | | | | | |--- class: 1
| | | | | | | |--- feature_2 > 2.50
| | | | | | | | |--- feature_4 <= 2.50
| | | | | | | | | |--- class: 1
| | | | | | | | |--- feature_4 > 2.50
| | | | | | | | | |--- class: 0
| | | | | |--- feature_1 > 2.50
| | | | | | |--- feature_1 <= 3.50
| | | | | | | |--- feature_0 <= 3.50
| | | | | | | | |--- class: 0
| | | | | | | |--- feature_0 > 3.50
| | | | | | | | |--- feature_2 <= 2.50
| | | | | | | | | |--- class: 1
| | | | | | | | |--- feature_2 > 2.50
| | | | | | | | | |--- feature_4 <= 2.00
| | | | | | | | | | |--- class: 1
| | | | | | | | | |--- feature_4 > 2.00
| | | | | | | | | | |--- class: 0
| | | | | | |--- feature_1 > 3.50
| | | | | | | |--- class: 0
| | | | |--- feature_3 > 4.50
| | | | | |--- class: 0
| |--- feature_4 > 3.50
| | |--- feature_2 <= 1.50
| | | |--- feature_4 <= 4.50
| | | | |--- feature_3 <= 3.50
| | | | | |--- feature_0 <= 1.50
| | | | | | |--- class: 0
| | | | | |--- feature_0 > 1.50
| | | | | | |--- class: 1
| | | | |--- feature_3 > 3.50
| | | | | |--- feature_1 <= 2.50
| | | | | | |--- feature_0 <= 2.50
| | | | | | | |--- class: 0
| | | | | | |--- feature_0 > 2.50
| | | | | | | |--- feature_3 <= 4.50
| | | | | | | | |--- class: 1
| | | | | | | |--- feature_3 > 4.50
| | | | | | | | |--- class: 0
| | | | | |--- feature_1 > 2.50
| | | | | | |--- class: 0
| | | |--- feature_4 > 4.50
| | | | |--- class: 0
| | |--- feature_2 > 1.50
| | | |--- class: 0
|--- feature_2 > 3.50
| |--- feature_1 <= 1.50
| | |--- feature_4 <= 1.50
| | | |--- feature_2 <= 4.50
| | | | |--- feature_0 <= 1.50
| | | | | |--- class: 0
| | | | |--- feature_0 > 1.50
| | | | | |--- feature_3 <= 4.50
| | | | | | |--- class: 1
| | | | | |--- feature_3 > 4.50
| | | | | | |--- class: 0
| | | |--- feature_2 > 4.50
| | | | |--- class: 0
| | |--- feature_4 > 1.50
| | | |--- class: 0
| |--- feature_1 > 1.50
| | |--- class: 0
>>>>>>> genetic_algorithm

View File

@ -3,9 +3,9 @@ from enum import Enum
from random import randrange
from map.tile import Tile
class Trashbin(Tile):
def __init__(self, img, x, y, width, height, waste_type):
def __init__(self, img, x, y, width, height):
super().__init__(img, x, y, width, height)
# dis_dump dis_trash mass space trash_mass trash_space
self.x = x
self.y = y

231
genetic_algorithm/TSP.py Normal file
View File

@ -0,0 +1,231 @@
import numpy as np, random, operator, pandas as pd, matplotlib.pyplot as plt
from path_search_algorthms.a_star import get_cost
from decision_tree import decisionTree
from settings import *
import math
# klasa tworząca miasta czy też śmietniki
class City:
def __init__(self, x, y, array):
self.x = x
self.y = y
self.array = array
# self.dist = distance
#dystans to d = sqrt(x^2 + y^2)
def distance(self, city):
#getting distance by astar gives wrong final distance (intial = final)
return get_cost(math.floor(self.x / TILESIZE), math.floor(self.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), self.array)
# xDis = abs(self.x - city.x)
# yDis = abs(self.y - city.y)
# distance = np.sqrt((xDis ** 2) + (yDis ** 2))
# return distance
def __repr__(self):
return "(" + str(self.x) + "," + str(self.y) + ")"
# fitness function,
# inverse of route distance
# we want to minimize distance so the larger the fitness the better
class Fitness:
def __init__(self, route, distanceArray):
self.route = route
self.distance = 0
self.fitness = 0.0
self.distanceArray = distanceArray
def routeDistance(self):
if self.distance == 0:
pathDistance = 0
for i in range(0, len(self.route)):
fromCity = self.route[i]
toCity = None
if i + 1 < len(self.route): # for returning to point 0?
toCity = self.route[i + 1]
else:
toCity = self.route[0]
# pathDistance += fromCity.distance(toCity)
pathDistance += self.distanceArray[str(fromCity.x)+" "+str(fromCity.y)+" "+str(toCity.x)+" "+str(toCity.y)]
self.distance = pathDistance
return self.distance
def routeFitness(self):
if self.fitness == 0:
self.fitness = 1 / float(self.routeDistance())
return self.fitness
# creating one individual - single route from city to city (trash to trash)
def createRoute(cityList):
route = random.sample(cityList, len(cityList))
return route
# creating initial population of given size
def initialPopulation(popSize, cityList):
population = []
for i in range(0, popSize):
population.append(createRoute(cityList))
return population
# ranking fitness of given route, output is ordered list with route id and its fitness score
def rankRoutes(population, distanceArray):
fitnessResults = {}
for i in range(0, len(population)):
fitnessResults[i] = Fitness(population[i], distanceArray).routeFitness()
return sorted(fitnessResults.items(), key=operator.itemgetter(1), reverse=True)
# selecting "mating pool"
# we are using here "Firness proportionate selection", its fitness-weighted probability of being selected
# moreover we are using elitism to ensure that the best of the best will preserve
def selection(popRanked, eliteSize):
selectionResults = []
# roulette wheel
df = pd.DataFrame(np.array(popRanked), columns=["Index", "Fitness"])
df['cum_sum'] = df.Fitness.cumsum()
df['cum_perc'] = 100 * df.cum_sum / df.Fitness.sum()
for i in range(0, eliteSize): # elitism
selectionResults.append(popRanked[i][0])
for i in range(0,
len(popRanked) - eliteSize): # comparing randomly drawn number to weights for selection for mating pool
pick = 100 * random.random()
for i in range(0, len(popRanked)):
if pick <= df.iat[i, 3]:
selectionResults.append(popRanked[i][0])
break
return selectionResults # returns list of route IDs
# creating mating pool from list of routes IDs from "selection"
def matingPool(population, selectionResults):
matingpool = []
for i in range(0, len(selectionResults)):
index = selectionResults[i]
matingpool.append(population[index])
return matingpool
# creating new generation
# ordered crossover bc we need to include all locations exactly one time
# randomly selecting a subset of the first parent string and then filling the remainder of route
# with genes from the second parent in the order in which they appear, without duplicating any genes from the first parent
def breed(parent1, parent2):
child = []
childP1 = []
childP2 = []
geneA = int(random.random() * len(parent1))
geneB = int(random.random() * len(parent1))
startGene = min(geneA, geneB)
endGene = max(geneA, geneB)
for i in range(startGene, endGene): # ordered crossover
childP1.append(parent1[i])
childP2 = [item for item in parent2 if item not in childP1]
child = childP1 + childP2
return child
# creating whole offspring population
def breedPopulation(matingpool, eliteSize):
children = []
length = len(matingpool) - eliteSize
pool = random.sample(matingpool, len(matingpool))
# using elitism to retain best genes (routes)
for i in range(0, eliteSize):
children.append(matingpool[i])
# filling rest generation
for i in range(0, length):
child = breed(pool[i], pool[len(matingpool) - i - 1])
children.append(child)
return children
# using swap mutation
# with specified low prob we swap two cities in route
def mutate(individual, mutationRate):
for swapped in range(len(individual)):
if (random.random() < mutationRate):
swapWith = int(random.random() * len(individual))
city1 = individual[swapped]
city2 = individual[swapWith]
individual[swapped] = city2
individual[swapWith] = city1
return individual
# extending mutate function to run through new pop
def mutatePopulation(population, mutationRate):
mutatedPop = []
for ind in range(0, len(population)):
mutatedInd = mutate(population[ind], mutationRate)
mutatedPop.append(mutatedInd)
return mutatedPop
# creating new generation
def nextGeneration(currentGen, eliteSize, mutationRate, distanceArray):
popRanked = rankRoutes(currentGen, distanceArray) # rank routes in current gen
selectionResults = selection(popRanked, eliteSize) # determining potential parents
matingpool = matingPool(currentGen, selectionResults) # creating mating pool
children = breedPopulation(matingpool, eliteSize) # creating new gen
nextGeneration = mutatePopulation(children, mutationRate) # applying mutation to new gen
return nextGeneration
# tutaj ma być lista kordów potencjalnych śmietników z drzewa decyzyjnego
cityList = []
# plotting the progress
def distanceFromCityToCity(cityFrom, city, array):
return get_cost(math.floor(cityFrom.x / TILESIZE), math.floor(cityFrom.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), array)
def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations, array):
a_star_distances = {}
for city in population:
for target in population:
if city == target:
continue
else:
a_star_distances[str(city.x)+" "+str(city.y)+" "+str(target.x)+" "+str(target.y)] = distanceFromCityToCity(city, target, array)
pop = initialPopulation(popSize, population)
progress = []
progress.append(1 / rankRoutes(pop, a_star_distances)[0][1])
print("Initial distance: " + str(1 / rankRoutes(pop, a_star_distances)[0][1]))
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate, a_star_distances)
progress.append(1 / rankRoutes(pop, a_star_distances)[0][1])
print("Final distance: " + str(1 / rankRoutes(pop, a_star_distances)[0][1]))
bestRouteIndex = rankRoutes(pop, a_star_distances)[0][0]
bestRoute = pop[bestRouteIndex]
plt.plot(progress)
plt.ylabel('Distance')
plt.xlabel('Generation')
plt.show()
return bestRoute
# geneticAlgorithmPlot(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)

65
main.py
View File

@ -12,13 +12,15 @@ from game_objects.trash import Trash
from map import map
from map import map_utils
from settings import *
from path_search_algorthms import bfs
from path_search_algorthms import a_star_controller
from path_search_algorthms import a_star_controller, a_star
from decision_tree import decisionTree
from NeuralNetwork import prediction
from settings import *
from game_objects.trash import Trash
from genetic_algorithm import TSP
from game_objects import aiPlayer
import itertools
def getTree():
@ -47,10 +49,7 @@ class Game():
pg.display.set_caption("Trashmaster")
self.load_data()
self.init_game()
# because dont work without data.txt
# self.init_bfs()
# self.init_a_star()
self.t = aiPlayer(self.player, game=self)
self.t = aiPlayer.aiPlayer(self.player, game=self)
def init_game(self):
# initialize all variables and do all the setup for a new game
@ -100,23 +99,37 @@ class Game():
x, y = i.get_coords()
dec = decisionTree.decision(getTree(), *atrrs_container)
if dec[0] == 1:
self.positive_decision.append(i)
self.positive_decision.append(i) # zmiana po to by losowało wszystkie smietniki a nie poprawne tylko, zeby ladniej bylo widac algorytm genetyczny
else:
self.negative_decision.append(i)
print('positive actions')
print(len(self.positive_decision))
# print('positive actions')
# for i in self.positive_actions:
# print('----')
# print(i)
# print('----')
self.draw()
def decsion_tree_move(self):
print('positive actions')
print(len(self.positive_decision))
for i in self.positive_decision:
for i in range(0,len(self.positive_decision)):
# print(i.get_coords())
print('action')
trash_x, trash_y = i.get_coords()
temp_tsp = str(self.tsp_list[i])
temp_tsp = temp_tsp.strip("()")
temp_tsp = temp_tsp.split(",")
trash_x = int(temp_tsp[0])
trash_y = int(temp_tsp[1])
print(trash_x, trash_y)
action = a_star_controller.get_actions_for_target_coords(trash_x, trash_y, self)
print(action)
self.t.startAiController(action)
@ -124,24 +137,35 @@ class Game():
print('--rozpoczecie sortowania smietnika--')
dir = "./resources/trash_dataset/test/all"
files = os.listdir(dir)
for i in range(0, 10):
for j in range(0, 10):
random = randint(0, 48)
file = files[random]
result = prediction.getPrediction(dir + '/' + file, 'trained_nn_20.pth')
img = pg.image.load(dir + '/' + file).convert_alpha()
img = pg.transform.scale(img, (128, 128))
trash = Trash(img, 0, 0, 128, 128)
offset_x, offset_y = self.camera.offset()
trash = Trash(img, math.floor(-offset_x * TILESIZE), math.floor(-offset_y * TILESIZE), 128, 128)
self.trashDisplay.empty()
self.trashDisplay.add(trash)
self.text_display = result
self.draw()
# print(result + ' ' + file)
pg.time.wait(100)
self.text_display = ''
self.trashDisplay.empty()
self.draw()
# print(self.positive_actions[0])
# self.t.startAiController(self.positive_actions[0])
def init_TSP(self):
city_list =[]
for i in self.positive_decision:
trash_x, trash_y = i.get_coords()
city_list.append(TSP.City(x=trash_x, y=trash_y, array=self.mapArray))
self.tsp_list = TSP.geneticAlgorithmPlot(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=500, array=self.mapArray)
print(self.tsp_list)
def load_data(self):
game_folder = os.path.dirname(__file__)
@ -154,6 +178,9 @@ class Game():
# game loop - set self.playing = False to end the game
self.playing = True
self.init_decision_tree()
self.init_TSP()
self.decsion_tree_move()
while self.playing:
self.dt = self.clock.tick(FPS) / 1000.0
self.events()
@ -181,7 +208,7 @@ class Game():
map.render_tiles(self.trashDisplay, self.screen, self.camera)
# draw text
text_surface = pg.font.SysFont('Comic Sans MS', 30).render(self.text_display, False, (0, 0, 0))
text_surface = pg.font.SysFont('Comic Sans MS', 30).render(self.text_display, False, (255, 255, 255))
self.screen.blit(text_surface, (0, 128))
# rerender additional sprites
@ -190,7 +217,7 @@ class Game():
if self.debug_mode:
pg.draw.rect(self.screen, CYAN, self.camera.apply_rect(sprite.hit_rect), 1)
self.player.hud_group.draw(self.screen)
# self.player.hud_group.draw(self.screen)
# finally update screen
pg.display.flip()

View File

@ -5,17 +5,6 @@ from settings import *
def get_tiles():
array = map_utils.generate_map()
# array = map_utils.get_blank_map_array()
# array[1][1] = 1
# array[1][2] = 1
# array[1][3] = 1
# array[1][4] = 1
# array[1][5] = 1
# array[1][6] = 1
# array[2][5] = 1
pattern = map_pattern.get_pattern()
tiles = map_utils.get_sprites(array, pattern)
return tiles, array

View File

@ -15,13 +15,13 @@ def generate_map():
map = get_blank_map_array()
# generowanie scian
for i in range(0, 20):
for i in range(0, WALL_NUMBER):
x = random.randint(0, MAP_WIDTH-1)
y = random.randint(0, MAP_HEIGHT-1)
map[y][x] = 1
# generowanie smietnikow
for i in range(0, 10):
for i in range(0, TRASHBIN_NUMBER):
x = random.randint(0, MAP_WIDTH-1)
y = random.randint(0, MAP_HEIGHT-1)
map[y][x] = 2
@ -53,7 +53,7 @@ def get_sprites(map, pattern):
elif tileId == 2:
trashbinId = random.randint(0, 4)
tile = Tile(pattern[0], offsetX, offsetY, TILE_SIZE_PX, TILE_SIZE_PX)
trashbin = Trashbin(trashbin_pattern[trashbinId], offsetX, offsetY, 32, 30, trashbinId)
trashbin = Trashbin(trashbin_pattern[trashbinId], offsetX, offsetY, 32, 30)
roadTiles.add(tile)
trashbinTiles.add(trashbin)
trashbins.append(trashbin)
@ -94,9 +94,3 @@ class Camera:
self.camera = pg.Rect(x, y, self.width, self.height)

11
mapa.py
View File

@ -2,17 +2,6 @@ import pygame as pg
import pytmx
# config
# TILE_SIZE = 16
# def preparedMap(screenSize):
# tileImage = pg.image.load('tile1.png')
# surface = pg.Surface(screenSize)
# for x in range(0, screenSize[0], TILE_SIZE):
# for y in range(0, screenSize[1], TILE_SIZE):
# surface.blit(tileImage, (x, y))
# return surface
class TiledMap:
# loading file

View File

@ -4,6 +4,8 @@ from path_search_algorthms import a_star_utils as utils
def get_cost(start_x: int, start_y: int, target_x: int, target_y: int, array):
actions = search_path(start_x, start_y, utils.Rotation.NONE, target_x, target_y, array)
if actions is None:
return 1
return len(actions)
@ -72,4 +74,3 @@ def trace_path(end_node: utils.Node):
path.append("forward")
return path

View File

@ -92,7 +92,9 @@ def get_rotate_change(rotationA: Rotation, rotationB: Rotation) -> int:
# get new rotation for target_node as neighbour of start_node
def get_needed_rotation(start_node: Node, target_node: Node) -> Rotation:
def get_needed_rotation(start_node: Node or bool, target_node: Node) -> Rotation:
if(start_node == False):
return target_node.rotation
if (start_node.x - target_node.x > 0):
return Rotation.LEFT
if (start_node.x - target_node.x < 0):

View File

@ -7,7 +7,7 @@ RED = (255, 0, 0)
#game settings
WIDTH = 1024+200
WIDTH = 1024
HEIGHT = 768
FPS = 60
@ -26,10 +26,13 @@ PLAYER_HIT_RECT = pg.Rect(0, 0, 50, 50)
PLAYER_WIDTH = 64
PLAYER_HEIGHT = 32
#map settings
MAP_WIDTH = 16
MAP_HEIGHT = 12
#map settings x 16 y 12
MAP_WIDTH = 25
MAP_HEIGHT = 25
TILE_SIZE_PX = 64
MAP_WIDTH_PX = MAP_WIDTH * TILE_SIZE_PX
MAP_HEIGHT_PX = MAP_HEIGHT * TILE_SIZE_PX
TRASHBIN_NUMBER = 70
WALL_NUMBER = 50