This commit is contained in:
Kacper 2022-06-10 02:12:10 +02:00
parent 005255ee9b
commit b1d2d04448
3 changed files with 62 additions and 64 deletions

View File

@ -183,10 +183,10 @@ def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations):
cityList = []
for i in range(0,25):
cityList.append(City(x=int(random.random() * 200), y=int(random.random() * 200)))
# for i in range(0,25):
# cityList.append(City(x=int(random.random() * 200), y=int(random.random() * 200)))
geneticAlgorithm(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)
# geneticAlgorithm(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)
@ -197,15 +197,20 @@ def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generatio
pop = initialPopulation(popSize, population)
progress = []
progress.append(1 / rankRoutes(pop)[0][1])
print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate)
progress.append(1 / rankRoutes(pop)[0][1])
print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
bestRouteIndex = rankRoutes(pop)[0][0]
bestRoute = pop[bestRouteIndex]
plt.plot(progress)
plt.ylabel('Distance')
plt.xlabel('Generation')
plt.show()
return bestRoute
# geneticAlgorithmPlot(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)

109
main.py
View File

@ -1,19 +1,20 @@
from asyncio import sleep
from calendar import c
from random import randint
import time
import os
from game_objects.player import Player
import pygame as pg
import sys
from os import path
from random import randint
import math
from map import *
from settings import *
import pygame as pg
import numpy
from game_objects.player import Player
from game_objects.aiPlayer import aiPlayer
from game_objects.trash import Trash
from map import map
from map import map_utils
from settings import *
from path_search_algorthms import bfs
from path_search_algorthms import a_star, a_star_utils
from path_search_algorthms import a_star_controller, a_star
from decision_tree import decisionTree
from NeuralNetwork import prediction
from game_objects.trash import Trash
@ -53,16 +54,6 @@ class Game():
# self.init_a_star()
self.t = aiPlayer.aiPlayer(self.player, game=self)
def get_actions_by_coords(self,x,y):
pos = (x,y)
offset_x, offset_y = self.camera.offset()
clicked_coords = [math.floor(pos[0] / TILESIZE) - offset_x, math.floor(pos[1] / TILESIZE) - offset_y]
actions = a_star.search_path(math.floor(self.player.pos[0] / TILESIZE),
math.floor(self.player.pos[1] / TILESIZE), self.player.rotation(),
clicked_coords[0], clicked_coords[1], self.mapArray)
return actions
def init_game(self):
# initialize all variables and do all the setup for a new game
@ -70,6 +61,12 @@ class Game():
# sprite groups and map array for calculations
(self.roadTiles, self.wallTiles, self.trashbinTiles), self.mapArray = map.get_tiles()
# save current map
file = open('last_map.nparr', 'wb')
numpy.save(file, self.mapArray, allow_pickle=True)
file.close
self.trashDisplay = pg.sprite.Group()
self.agentSprites = pg.sprite.Group()
# player obj
@ -80,7 +77,6 @@ class Game():
# other
self.debug_mode = False
def init_bfs(self):
start_node = (0, 0)
target_node = (18, 18)
@ -96,17 +92,8 @@ class Game():
nextNode = node[1]
print(realPath)
def init_a_star(self):
# szukanie sciezki na sztywno i wyprintowanie wyniku (tablica stringow)
start_x = 0
start_y = 0
target_x = 6
target_y = 2
path = a_star.search_path(start_x, start_y, target_x, target_y, self.mapArray)
print(path)
def init_decision_tree(self):
# logika pracy z drzewem
# logika pracy z drzewem
self.positive_decision = []
self.negative_decision = []
@ -118,19 +105,22 @@ class Game():
self.positive_decision.append(i)
else:
self.negative_decision.append(i)
print('positive actions')
print(len(self.positive_decision))
# print('positive actions')
# for i in self.positive_actions:
# print('----')
# print(i)
# print('----')
def decsion_tree_move(self):
print('positive actions')
print(len(self.positive_decision))
for i in self.positive_decision:
# print(i.get_coords())
print('action')
trash_x, trash_y = i.get_coords()
action = self.get_actions_by_coords(trash_x, trash_y)
action = a_star_controller.get_actions_for_target_coords(trash_x, trash_y, self)
print(action)
self.t.startAiController(action)
print('')
@ -140,15 +130,15 @@ class Game():
for i in range(0, 10):
random = randint(0, 48)
file = files[random]
result = prediction.getPrediction(dir + '/' +file, 'trained_nn_20.pth')
img = pg.image.load(dir + '/' +file).convert_alpha()
result = prediction.getPrediction(dir + '/' + file, 'trained_nn_20.pth')
img = pg.image.load(dir + '/' + file).convert_alpha()
img = pg.transform.scale(img, (128, 128))
trash = Trash(img, 0, 0, 128, 128)
self.trashDisplay.add(trash)
self.text_display = result
self.draw()
print(result + ' ' + file)
pg.time.wait(1000)
# print(result + ' ' + file)
pg.time.wait(100)
self.text_display = ''
self.draw()
@ -156,25 +146,32 @@ class Game():
# self.t.startAiController(self.positive_actions[0])
def init_TSP(self):
city_list = self.positive_decision
dist = a_star.path_dist
for i in range(0,25):
city_list.append(TSP.City(x=int(random.random() * 200), y=int(random.random() * 200)))
city_list =[]
tsp_list = TSP.geneticAlgorithm(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)
for i in self.positive_decision:
trash_x, trash_y = i.get_coords()
city_list.append(TSP.City(x=int(trash_x), y=int(trash_y)))
# dist = a_star.get_cost
tsp_list = TSP.geneticAlgorithmPlot(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=200)
print(tsp_list)
def load_data(self):
game_folder = path.dirname(__file__)
img_folder = path.join(game_folder, 'resources/textures')
game_folder = os.path.dirname(__file__)
img_folder = os.path.join(game_folder, 'resources/textures')
self.player_img = pg.image.load(path.join(img_folder, PLAYER_IMG)).convert_alpha()
self.player_img = pg.image.load(os.path.join(img_folder, PLAYER_IMG)).convert_alpha()
self.player_img = pg.transform.scale(self.player_img, (PLAYER_WIDTH, PLAYER_HEIGHT))
def run(self):
# game loop - set self.playing = False to end the game
# game loop - set self.playing = False to end the game
self.playing = True
self.init_decision_tree()
self.init_TSP()
self.decsion_tree_move()
while self.playing:
self.dt = self.clock.tick(FPS) / 1000.0
self.events()
@ -202,8 +199,8 @@ class Game():
map.render_tiles(self.trashDisplay, self.screen, self.camera)
# draw text
text_surface = pg.font.SysFont('Comic Sans MS', 30).render(self.text_display, False, (0,0,0))
self.screen.blit(text_surface, (0,128))
text_surface = pg.font.SysFont('Comic Sans MS', 30).render(self.text_display, False, (255, 255, 255))
self.screen.blit(text_surface, (0, 128))
# rerender additional sprites
for sprite in self.agentSprites:
@ -211,7 +208,7 @@ class Game():
if self.debug_mode:
pg.draw.rect(self.screen, CYAN, self.camera.apply_rect(sprite.hit_rect), 1)
self.player.hud_group.draw(self.screen)
# self.player.hud_group.draw(self.screen)
# finally update screen
pg.display.flip()
@ -228,20 +225,16 @@ class Game():
pos = pg.mouse.get_pos()
offset_x, offset_y = self.camera.offset()
clicked_coords = [math.floor(pos[0] / TILESIZE) - offset_x, math.floor(pos[1] / TILESIZE) - offset_y]
actions = a_star.search_path(math.floor(self.player.pos[0] / TILESIZE),
math.floor(self.player.pos[1] / TILESIZE), self.player.rotation(),
clicked_coords[0], clicked_coords[1], self.mapArray)
# print(actions)
actions = a_star_controller.get_actions_by_coords(clicked_coords[0], clicked_coords[1], self)
if (actions != None):
self.t.startAiController(actions)
# create the game object
if __name__ == "__main__":
g = Game()
g.run()
g.show_go_screen()

View File

@ -21,7 +21,7 @@ def generate_map():
map[y][x] = 1
# generowanie smietnikow
for i in range(0, 10):
for i in range(0, 30):
x = random.randint(0, MAP_WIDTH-1)
y = random.randint(0, MAP_HEIGHT-1)
map[y][x] = 2