Merge branch 'genetic_algorithm' of https://git.wmi.amu.edu.pl/s462072/Trashmaster into genetic_algorithm

This commit is contained in:
Radosław Trzmielewski 2022-06-10 11:02:07 +02:00
commit f55886a199
4 changed files with 633 additions and 566 deletions

View File

@ -4,12 +4,21 @@
| | | |--- class: 0
| | |--- feature_0 > 1.50
| | | |--- feature_3 <= 3.50
<<<<<<< HEAD
| | | | |--- feature_4 <= 2.50
| | | | | |--- class: 1
| | | | |--- feature_4 > 2.50
| | | | | |--- feature_2 <= 2.50
| | | | | | |--- class: 1
| | | | | |--- feature_2 > 2.50
=======
| | | | |--- feature_2 <= 2.50
| | | | | |--- class: 1
| | | | |--- feature_2 > 2.50
| | | | | |--- feature_4 <= 2.50
| | | | | | |--- class: 1
| | | | | |--- feature_4 > 2.50
>>>>>>> a16ec52642067a2be0b41a5c3bcab24193122343
| | | | | | |--- class: 0
| | | |--- feature_3 > 3.50
| | | | |--- feature_3 <= 4.50
@ -26,24 +35,42 @@
| | | | | | | |--- feature_1 > 1.50
| | | | | | | | |--- class: 0
| | | | | | |--- feature_0 > 2.50
<<<<<<< HEAD
| | | | | | | |--- feature_2 <= 2.50
| | | | | | | | |--- class: 1
| | | | | | | |--- feature_2 > 2.50
| | | | | | | | |--- feature_4 <= 2.50
| | | | | | | | | |--- class: 1
| | | | | | | | |--- feature_4 > 2.50
=======
| | | | | | | |--- feature_4 <= 2.50
| | | | | | | | |--- class: 1
| | | | | | | |--- feature_4 > 2.50
| | | | | | | | |--- feature_2 <= 2.50
| | | | | | | | | |--- class: 1
| | | | | | | | |--- feature_2 > 2.50
>>>>>>> a16ec52642067a2be0b41a5c3bcab24193122343
| | | | | | | | | |--- class: 0
| | | | | |--- feature_1 > 2.50
| | | | | | |--- feature_1 <= 3.50
| | | | | | | |--- feature_0 <= 3.50
| | | | | | | | |--- class: 0
| | | | | | | |--- feature_0 > 3.50
<<<<<<< HEAD
| | | | | | | | |--- feature_2 <= 2.50
| | | | | | | | | |--- class: 1
| | | | | | | | |--- feature_2 > 2.50
| | | | | | | | | |--- feature_4 <= 2.00
| | | | | | | | | | |--- class: 1
| | | | | | | | | |--- feature_4 > 2.00
=======
| | | | | | | | |--- feature_4 <= 2.50
| | | | | | | | | |--- class: 1
| | | | | | | | |--- feature_4 > 2.50
| | | | | | | | | |--- feature_2 <= 2.00
| | | | | | | | | | |--- class: 1
| | | | | | | | | |--- feature_2 > 2.00
>>>>>>> a16ec52642067a2be0b41a5c3bcab24193122343
| | | | | | | | | | |--- class: 0
| | | | | | |--- feature_1 > 3.50
| | | | | | | |--- class: 0
@ -59,6 +86,7 @@
| | | | | | |--- class: 1
| | | | |--- feature_3 > 3.50
| | | | | |--- feature_1 <= 2.50
<<<<<<< HEAD
| | | | | | |--- feature_0 <= 2.50
| | | | | | | |--- class: 0
| | | | | | |--- feature_0 > 2.50
@ -66,6 +94,15 @@
| | | | | | | | |--- class: 1
| | | | | | | |--- feature_3 > 4.50
| | | | | | | | |--- class: 0
=======
| | | | | | |--- feature_3 <= 4.50
| | | | | | | |--- feature_0 <= 2.50
| | | | | | | | |--- class: 0
| | | | | | | |--- feature_0 > 2.50
| | | | | | | | |--- class: 1
| | | | | | |--- feature_3 > 4.50
| | | | | | | |--- class: 0
>>>>>>> a16ec52642067a2be0b41a5c3bcab24193122343
| | | | | |--- feature_1 > 2.50
| | | | | | |--- class: 0
| | | |--- feature_4 > 4.50
@ -76,6 +113,7 @@
| |--- feature_1 <= 1.50
| | |--- feature_4 <= 1.50
| | | |--- feature_2 <= 4.50
<<<<<<< HEAD
| | | | |--- feature_0 <= 1.50
| | | | | |--- class: 0
| | | | |--- feature_0 > 1.50
@ -83,6 +121,15 @@
| | | | | | |--- class: 1
| | | | | |--- feature_3 > 4.50
| | | | | | |--- class: 0
=======
| | | | |--- feature_3 <= 4.50
| | | | | |--- feature_0 <= 1.50
| | | | | | |--- class: 0
| | | | | |--- feature_0 > 1.50
| | | | | | |--- class: 1
| | | | |--- feature_3 > 4.50
| | | | | |--- class: 0
>>>>>>> a16ec52642067a2be0b41a5c3bcab24193122343
| | | |--- feature_2 > 4.50
| | | | |--- class: 0
| | |--- feature_4 > 1.50

View File

@ -1,235 +1,250 @@
import numpy as np, random, operator, pandas as pd, matplotlib.pyplot as plt
from path_search_algorthms.a_star import get_cost
from decision_tree import decisionTree
from settings import *
import math
# klasa tworząca miasta czy też śmietniki
class City:
def __init__(self, x, y):
self.x = x
self.y = y
#self.array = array
# self.dist = distance
#dystans to d = sqrt(x^2 + y^2)
def distance(self, city):
#getting distance by astar gives wrong final distance (intial = final)
#return get_cost(math.floor(self.x / TILESIZE), math.floor(self.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), self.array)
xDis = abs(self.x - city.x)
yDis = abs(self.y - city.y)
distance = np.sqrt((xDis ** 2) + (yDis ** 2))
return distance
def __repr__(self):
return "(" + str(self.x) + "," + str(self.y) + ")"
# fitness function,
# inverse of route distance
# we want to minimize distance so the larger the fitness the better
class Fitness:
def __init__(self, route):
self.route = route
self.distance = 0
self.fitness = 0.0
def routeDistance(self):
if self.distance == 0:
pathDistance = 0
for i in range(0, len(self.route)):
fromCity = self.route[i]
toCity = None
if i + 1 < len(self.route): # for returning to point 0?
toCity = self.route[i + 1]
else:
toCity = self.route[0]
pathDistance += fromCity.distance(toCity)
self.distance = pathDistance
return self.distance
def routeFitness(self):
if self.fitness == 0:
self.fitness = 1 / float(self.routeDistance())
return self.fitness
# creating one individual - single route from city to city (trash to trash)
def createRoute(cityList):
route = random.sample(cityList, len(cityList))
return route
# creating initial population of given size
def initialPopulation(popSize, cityList):
population = []
for i in range(0, popSize):
population.append(createRoute(cityList))
return population
# ranking fitness of given route, output is ordered list with route id and its fitness score
def rankRoutes(population):
fitnessResults = {}
for i in range(0, len(population)):
fitnessResults[i] = Fitness(population[i]).routeFitness()
return sorted(fitnessResults.items(), key=operator.itemgetter(1), reverse=True)
# selecting "mating pool"
# we are using here "Firness proportionate selection", its fitness-weighted probability of being selected
# moreover we are using elitism to ensure that the best of the best will preserve
def selection(popRanked, eliteSize):
selectionResults = []
# roulette wheel
df = pd.DataFrame(np.array(popRanked), columns=["Index", "Fitness"])
df['cum_sum'] = df.Fitness.cumsum()
df['cum_perc'] = 100 * df.cum_sum / df.Fitness.sum()
for i in range(0, eliteSize): # elitism
selectionResults.append(popRanked[i][0])
for i in range(0,
len(popRanked) - eliteSize): # comparing randomly drawn number to weights for selection for mating pool
pick = 100 * random.random()
for i in range(0, len(popRanked)):
if pick <= df.iat[i, 3]:
selectionResults.append(popRanked[i][0])
break
return selectionResults # returns list of route IDs
# creating mating pool from list of routes IDs from "selection"
def matingPool(population, selectionResults):
matingpool = []
for i in range(0, len(selectionResults)):
index = selectionResults[i]
matingpool.append(population[index])
return matingpool
# creating new generation
# ordered crossover bc we need to include all locations exactly one time
# randomly selecting a subset of the first parent string and then filling the remainder of route
# with genes from the second parent in the order in which they appear, without duplicating any genes from the first parent
def breed(parent1, parent2):
child = []
childP1 = []
childP2 = []
geneA = int(random.random() * len(parent1))
geneB = int(random.random() * len(parent1))
startGene = min(geneA, geneB)
endGene = max(geneA, geneB)
for i in range(startGene, endGene): # ordered crossover
childP1.append(parent1[i])
childP2 = [item for item in parent2 if item not in childP1]
child = childP1 + childP2
return child
# creating whole offspring population
def breedPopulation(matingpool, eliteSize):
children = []
length = len(matingpool) - eliteSize
pool = random.sample(matingpool, len(matingpool))
# using elitism to retain best genes (routes)
for i in range(0, eliteSize):
children.append(matingpool[i])
# filling rest generation
for i in range(0, length):
child = breed(pool[i], pool[len(matingpool) - i - 1])
children.append(child)
return children
# using swap mutation
# with specified low prob we swap two cities in route
def mutate(individual, mutationRate):
for swapped in range(len(individual)):
if (random.random() < mutationRate):
swapWith = int(random.random() * len(individual))
city1 = individual[swapped]
city2 = individual[swapWith]
individual[swapped] = city2
individual[swapWith] = city1
return individual
# extending mutate function to run through new pop
def mutatePopulation(population, mutationRate):
mutatedPop = []
for ind in range(0, len(population)):
mutatedInd = mutate(population[ind], mutationRate)
mutatedPop.append(mutatedInd)
return mutatedPop
# creating new generation
def nextGeneration(currentGen, eliteSize, mutationRate):
popRanked = rankRoutes(currentGen) # rank routes in current gen
selectionResults = selection(popRanked, eliteSize) # determining potential parents
matingpool = matingPool(currentGen, selectionResults) # creating mating pool
children = breedPopulation(matingpool, eliteSize) # creating new gen
nextGeneration = mutatePopulation(children, mutationRate) # applying mutation to new gen
return nextGeneration
def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations):
pop = initialPopulation(popSize, population)
print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate)
print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
bestRouteIndex = rankRoutes(pop)[0][0]
bestRoute = pop[bestRouteIndex]
return bestRoute
# tutaj ma być lista kordów potencjalnych śmietników z drzewa decyzyjnego
cityList = []
# for i in range(0,25):
# cityList.append(City(x=int(random.random() * 200), y=int(random.random() * 200)))
# geneticAlgorithm(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)
# plotting the progress
def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations):
pop = initialPopulation(popSize, population)
progress = []
progress.append(1 / rankRoutes(pop)[0][1])
print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate)
progress.append(1 / rankRoutes(pop)[0][1])
print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
bestRouteIndex = rankRoutes(pop)[0][0]
bestRoute = pop[bestRouteIndex]
plt.plot(progress)
plt.ylabel('Distance')
plt.xlabel('Generation')
plt.show()
return bestRoute
# geneticAlgorithmPlot(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)
import numpy as np, random, operator, pandas as pd, matplotlib.pyplot as plt
from path_search_algorthms.a_star import get_cost
from decision_tree import decisionTree
from settings import *
import math
# klasa tworząca miasta czy też śmietniki
class City:
def __init__(self, x, y, array):
self.x = x
self.y = y
self.array = array
# self.dist = distance
#dystans to d = sqrt(x^2 + y^2)
def distance(self, city):
#getting distance by astar gives wrong final distance (intial = final)
return get_cost(math.floor(self.x / TILESIZE), math.floor(self.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), self.array)
# xDis = abs(self.x - city.x)
# yDis = abs(self.y - city.y)
# distance = np.sqrt((xDis ** 2) + (yDis ** 2))
# return distance
def __repr__(self):
return "(" + str(self.x) + "," + str(self.y) + ")"
# fitness function,
# inverse of route distance
# we want to minimize distance so the larger the fitness the better
class Fitness:
def __init__(self, route, distanceArray):
self.route = route
self.distance = 0
self.fitness = 0.0
self.distanceArray = distanceArray
def routeDistance(self):
if self.distance == 0:
pathDistance = 0
for i in range(0, len(self.route)):
fromCity = self.route[i]
toCity = None
if i + 1 < len(self.route): # for returning to point 0?
toCity = self.route[i + 1]
else:
toCity = self.route[0]
# pathDistance += fromCity.distance(toCity)
pathDistance += self.distanceArray[str(fromCity.x)+" "+str(fromCity.y)+" "+str(toCity.x)+" "+str(toCity.y)]
self.distance = pathDistance
return self.distance
def routeFitness(self):
if self.fitness == 0:
self.fitness = 1 / float(self.routeDistance())
return self.fitness
# creating one individual - single route from city to city (trash to trash)
def createRoute(cityList):
route = random.sample(cityList, len(cityList))
return route
# creating initial population of given size
def initialPopulation(popSize, cityList):
population = []
for i in range(0, popSize):
population.append(createRoute(cityList))
return population
# ranking fitness of given route, output is ordered list with route id and its fitness score
def rankRoutes(population, distanceArray):
fitnessResults = {}
for i in range(0, len(population)):
fitnessResults[i] = Fitness(population[i], distanceArray).routeFitness()
return sorted(fitnessResults.items(), key=operator.itemgetter(1), reverse=True)
# selecting "mating pool"
# we are using here "Firness proportionate selection", its fitness-weighted probability of being selected
# moreover we are using elitism to ensure that the best of the best will preserve
def selection(popRanked, eliteSize):
selectionResults = []
# roulette wheel
df = pd.DataFrame(np.array(popRanked), columns=["Index", "Fitness"])
df['cum_sum'] = df.Fitness.cumsum()
df['cum_perc'] = 100 * df.cum_sum / df.Fitness.sum()
for i in range(0, eliteSize): # elitism
selectionResults.append(popRanked[i][0])
for i in range(0,
len(popRanked) - eliteSize): # comparing randomly drawn number to weights for selection for mating pool
pick = 100 * random.random()
for i in range(0, len(popRanked)):
if pick <= df.iat[i, 3]:
selectionResults.append(popRanked[i][0])
break
return selectionResults # returns list of route IDs
# creating mating pool from list of routes IDs from "selection"
def matingPool(population, selectionResults):
matingpool = []
for i in range(0, len(selectionResults)):
index = selectionResults[i]
matingpool.append(population[index])
return matingpool
# creating new generation
# ordered crossover bc we need to include all locations exactly one time
# randomly selecting a subset of the first parent string and then filling the remainder of route
# with genes from the second parent in the order in which they appear, without duplicating any genes from the first parent
def breed(parent1, parent2):
child = []
childP1 = []
childP2 = []
geneA = int(random.random() * len(parent1))
geneB = int(random.random() * len(parent1))
startGene = min(geneA, geneB)
endGene = max(geneA, geneB)
for i in range(startGene, endGene): # ordered crossover
childP1.append(parent1[i])
childP2 = [item for item in parent2 if item not in childP1]
child = childP1 + childP2
return child
# creating whole offspring population
def breedPopulation(matingpool, eliteSize):
children = []
length = len(matingpool) - eliteSize
pool = random.sample(matingpool, len(matingpool))
# using elitism to retain best genes (routes)
for i in range(0, eliteSize):
children.append(matingpool[i])
# filling rest generation
for i in range(0, length):
child = breed(pool[i], pool[len(matingpool) - i - 1])
children.append(child)
return children
# using swap mutation
# with specified low prob we swap two cities in route
def mutate(individual, mutationRate):
for swapped in range(len(individual)):
if (random.random() < mutationRate):
swapWith = int(random.random() * len(individual))
city1 = individual[swapped]
city2 = individual[swapWith]
individual[swapped] = city2
individual[swapWith] = city1
return individual
# extending mutate function to run through new pop
def mutatePopulation(population, mutationRate):
mutatedPop = []
for ind in range(0, len(population)):
mutatedInd = mutate(population[ind], mutationRate)
mutatedPop.append(mutatedInd)
return mutatedPop
# creating new generation
def nextGeneration(currentGen, eliteSize, mutationRate, distanceArray):
popRanked = rankRoutes(currentGen, distanceArray) # rank routes in current gen
selectionResults = selection(popRanked, eliteSize) # determining potential parents
matingpool = matingPool(currentGen, selectionResults) # creating mating pool
children = breedPopulation(matingpool, eliteSize) # creating new gen
nextGeneration = mutatePopulation(children, mutationRate) # applying mutation to new gen
return nextGeneration
def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations, distanceArray):
pop = initialPopulation(popSize, population)
print("Initial distance: " + str(1 / rankRoutes(pop, distanceArray)[0][1]))
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate, distanceArray)
print("Final distance: " + str(1 / rankRoutes(pop, distanceArray)[0][1]))
bestRouteIndex = rankRoutes(pop, distanceArray)[0][0]
bestRoute = pop[bestRouteIndex]
return bestRoute
# tutaj ma być lista kordów potencjalnych śmietników z drzewa decyzyjnego
cityList = []
# for i in range(0,25):
# cityList.append(City(x=int(random.random() * 200), y=int(random.random() * 200)))
# geneticAlgorithm(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)
# plotting the progress
def distanceFromCityToCity(cityFrom, city, array):
return get_cost(math.floor(cityFrom.x / TILESIZE), math.floor(cityFrom.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), array)
def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations, array):
a_star_distances = {}
for city in population:
for target in population:
if city == target:
continue
else:
a_star_distances[str(city.x)+" "+str(city.y)+" "+str(target.x)+" "+str(target.y)] = distanceFromCityToCity(city, target, array)
pop = initialPopulation(popSize, population)
progress = []
progress.append(1 / rankRoutes(pop, a_star_distances)[0][1])
print("Initial distance: " + str(1 / rankRoutes(pop, a_star_distances)[0][1]))
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate, a_star_distances)
progress.append(1 / rankRoutes(pop, a_star_distances)[0][1])
print("Final distance: " + str(1 / rankRoutes(pop, a_star_distances)[0][1]))
bestRouteIndex = rankRoutes(pop, a_star_distances)[0][0]
bestRoute = pop[bestRouteIndex]
plt.plot(progress)
plt.ylabel('Distance')
plt.xlabel('Generation')
plt.show()
return bestRoute
# geneticAlgorithmPlot(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=1000)

512
main.py
View File

@ -1,256 +1,258 @@
import os
import sys
from random import randint
import math
import pygame as pg
import numpy
from game_objects.player import Player
from game_objects.aiPlayer import aiPlayer
from game_objects.trash import Trash
from map import map
from map import map_utils
from settings import *
from path_search_algorthms import bfs
from path_search_algorthms import a_star_controller, a_star
from decision_tree import decisionTree
from NeuralNetwork import prediction
from game_objects.trash import Trash
from genetic_algorithm import TSP
from game_objects import aiPlayer
import itertools
def getTree():
tree = decisionTree.tree()
decisionTree.tree_as_txt(tree)
# decisionTree.tree_to_png(tree)
decisionTree.tree_to_structure(tree)
drzewo = decisionTree.tree_from_structure('./decision_tree/tree_model')
# print("Dla losowych danych predykcja czy wziąć kosz to: ")
# dec = decisionTree.decision(drzewo, *(4,1,1,1))
# print('---')
# print(f"decision is{dec}")
# print('---')
return drzewo
class Game():
def __init__(self):
pg.init()
pg.font.init()
self.clock = pg.time.Clock()
self.dt = self.clock.tick(FPS) / 333.0
self.screen = pg.display.set_mode((WIDTH, HEIGHT))
pg.display.set_caption("Trashmaster")
self.load_data()
self.init_game()
# because dont work without data.txt
# self.init_bfs()
# self.init_a_star()
self.t = aiPlayer.aiPlayer(self.player, game=self)
def init_game(self):
# initialize all variables and do all the setup for a new game
self.text_display = ''
# sprite groups and map array for calculations
(self.roadTiles, self.wallTiles, self.trashbinTiles), self.mapArray = map.get_tiles()
# save current map
file = open('last_map.nparr', 'wb')
numpy.save(file, self.mapArray, allow_pickle=True)
file.close
self.trashDisplay = pg.sprite.Group()
self.agentSprites = pg.sprite.Group()
# player obj
self.player = Player(self, 32, 32)
# camera obj
self.camera = map_utils.Camera(MAP_WIDTH_PX, MAP_HEIGHT_PX)
# other
self.debug_mode = False
def init_bfs(self):
start_node = (0, 0)
target_node = (18, 18)
find_path = bfs.BreadthSearchAlgorithm(start_node, target_node, self.mapArray)
path = find_path.bfs()
# print(path)
realPath = []
nextNode = target_node
for i in range(len(path) - 1, 0, -1):
node = path[i]
if node[0] == nextNode:
realPath.insert(0, node[0])
nextNode = node[1]
print(realPath)
def init_decision_tree(self):
# logika pracy z drzewem
self.positive_decision = []
self.negative_decision = []
for i in self.trashbinTiles:
atrrs_container = i.get_attributes()
x, y = i.get_coords()
dec = decisionTree.decision(getTree(), *atrrs_container)
# if dec[0] == 1:
self.positive_decision.append(i) # zmiana po to by losowało wszystkie smietniki a nie poprawne tylko, zeby ladniej bylo widac algorytm genetyczny
# else:
# self.negative_decision.append(i)
print('positive actions')
print(len(self.positive_decision))
# print('positive actions')
# for i in self.positive_actions:
# print('----')
# print(i)
# print('----')
self.draw()
def decsion_tree_move(self):
for i in range(0,len(self.positive_decision)):
# print(i.get_coords())
print('action')
# trash_x, trash_y = i.get_coords()
# for ii in self.tsp_list:
temp_tsp = str(self.tsp_list[i])
temp_tsp = temp_tsp.strip("()")
temp_tsp = temp_tsp.split(",")
trash_x = int(temp_tsp[0])
trash_y = int(temp_tsp[1])
print(trash_x, trash_y)
action = a_star_controller.get_actions_for_target_coords(trash_x, trash_y, self)
print(action)
self.t.startAiController(action)
print('')
print('--rozpoczecie sortowania smietnika--')
dir = "./resources/trash_dataset/test/all"
files = os.listdir(dir)
for j in range(0, 10):
random = randint(0, 48)
file = files[random]
result = prediction.getPrediction(dir + '/' + file, 'trained_nn_20.pth')
img = pg.image.load(dir + '/' + file).convert_alpha()
img = pg.transform.scale(img, (128, 128))
trash = Trash(img, 0, 0, 128, 128)
self.trashDisplay.add(trash)
self.text_display = result
self.draw()
# print(result + ' ' + file)
pg.time.wait(100)
self.text_display = ''
self.draw()
# print(self.positive_actions[0])
# self.t.startAiController(self.positive_actions[0])
def init_TSP(self):
city_list =[]
for i in self.positive_decision:
trash_x, trash_y = i.get_coords()
# city_list.append(TSP.City(x=int(trash_x), y=int(trash_y), array=self.mapArray))
city_list.append(TSP.City(x=int(trash_x), y=int(trash_y)))
# dist = a_star.get_cost
self.tsp_list = TSP.geneticAlgorithmPlot(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=300)
print(self.tsp_list)
def load_data(self):
game_folder = os.path.dirname(__file__)
img_folder = os.path.join(game_folder, 'resources/textures')
self.player_img = pg.image.load(os.path.join(img_folder, PLAYER_IMG)).convert_alpha()
self.player_img = pg.transform.scale(self.player_img, (PLAYER_WIDTH, PLAYER_HEIGHT))
def run(self):
# game loop - set self.playing = False to end the game
self.playing = True
self.init_decision_tree()
self.init_TSP()
self.decsion_tree_move()
while self.playing:
self.dt = self.clock.tick(FPS) / 1000.0
self.events()
self.update()
self.draw()
def quit(self):
pg.quit()
sys.exit()
def update(self):
# update portion of the game loop
self.agentSprites.update()
self.camera.update(self.player)
# pygame.display.update()
def draw(self):
# display fps as window title
pg.display.set_caption("{:.2f}".format(self.clock.get_fps()))
# rerender map
map.render_tiles(self.roadTiles, self.screen, self.camera)
map.render_tiles(self.wallTiles, self.screen, self.camera, self.debug_mode)
map.render_tiles(self.trashbinTiles, self.screen, self.camera)
map.render_tiles(self.trashDisplay, self.screen, self.camera)
# draw text
text_surface = pg.font.SysFont('Comic Sans MS', 30).render(self.text_display, False, (255, 255, 255))
self.screen.blit(text_surface, (0, 128))
# rerender additional sprites
for sprite in self.agentSprites:
self.screen.blit(sprite.image, self.camera.apply(sprite))
if self.debug_mode:
pg.draw.rect(self.screen, CYAN, self.camera.apply_rect(sprite.hit_rect), 1)
# self.player.hud_group.draw(self.screen)
# finally update screen
pg.display.flip()
def events(self):
for event in pg.event.get():
if event.type == pg.QUIT:
self.quit()
if event.type == pg.KEYDOWN:
if event.key == pg.K_ESCAPE:
self.quit()
if event.key == pg.K_h:
self.debug_mode = not self.debug_mode
if event.type == pg.MOUSEBUTTONUP:
pos = pg.mouse.get_pos()
offset_x, offset_y = self.camera.offset()
clicked_coords = [math.floor(pos[0] / TILESIZE) - offset_x, math.floor(pos[1] / TILESIZE) - offset_y]
actions = a_star_controller.get_actions_by_coords(clicked_coords[0], clicked_coords[1], self)
if (actions != None):
self.t.startAiController(actions)
# create the game object
if __name__ == "__main__":
g = Game()
g.run()
import os
import sys
from random import randint
import math
import pygame as pg
import numpy
from game_objects.player import Player
from game_objects.aiPlayer import aiPlayer
from game_objects.trash import Trash
from map import map
from map import map_utils
from settings import *
from path_search_algorthms import bfs
from path_search_algorthms import a_star_controller, a_star
from decision_tree import decisionTree
from NeuralNetwork import prediction
from game_objects.trash import Trash
from genetic_algorithm import TSP
from game_objects import aiPlayer
import itertools
def getTree():
tree = decisionTree.tree()
decisionTree.tree_as_txt(tree)
# decisionTree.tree_to_png(tree)
decisionTree.tree_to_structure(tree)
drzewo = decisionTree.tree_from_structure('./decision_tree/tree_model')
# print("Dla losowych danych predykcja czy wziąć kosz to: ")
# dec = decisionTree.decision(drzewo, *(4,1,1,1))
# print('---')
# print(f"decision is{dec}")
# print('---')
return drzewo
class Game():
def __init__(self):
pg.init()
pg.font.init()
self.clock = pg.time.Clock()
self.dt = self.clock.tick(FPS) / 333.0
self.screen = pg.display.set_mode((WIDTH, HEIGHT))
pg.display.set_caption("Trashmaster")
self.load_data()
self.init_game()
# because dont work without data.txt
# self.init_bfs()
# self.init_a_star()
self.t = aiPlayer.aiPlayer(self.player, game=self)
def init_game(self):
# initialize all variables and do all the setup for a new game
self.text_display = ''
# sprite groups and map array for calculations
(self.roadTiles, self.wallTiles, self.trashbinTiles), self.mapArray = map.get_tiles()
# save current map
file = open('last_map.nparr', 'wb')
numpy.save(file, self.mapArray, allow_pickle=True)
file.close
self.trashDisplay = pg.sprite.Group()
self.agentSprites = pg.sprite.Group()
# player obj
self.player = Player(self, 32, 32)
# camera obj
self.camera = map_utils.Camera(MAP_WIDTH_PX, MAP_HEIGHT_PX)
# other
self.debug_mode = False
def init_bfs(self):
start_node = (0, 0)
target_node = (18, 18)
find_path = bfs.BreadthSearchAlgorithm(start_node, target_node, self.mapArray)
path = find_path.bfs()
# print(path)
realPath = []
nextNode = target_node
for i in range(len(path) - 1, 0, -1):
node = path[i]
if node[0] == nextNode:
realPath.insert(0, node[0])
nextNode = node[1]
print(realPath)
def init_decision_tree(self):
# logika pracy z drzewem
self.positive_decision = []
self.negative_decision = []
for i in self.trashbinTiles:
atrrs_container = i.get_attributes()
x, y = i.get_coords()
dec = decisionTree.decision(getTree(), *atrrs_container)
# if dec[0] == 1:
self.positive_decision.append(i) # zmiana po to by losowało wszystkie smietniki a nie poprawne tylko, zeby ladniej bylo widac algorytm genetyczny
# else:
# self.negative_decision.append(i)
print('positive actions')
print(len(self.positive_decision))
# print('positive actions')
# for i in self.positive_actions:
# print('----')
# print(i)
# print('----')
self.draw()
def decsion_tree_move(self):
for i in range(0,len(self.positive_decision)):
# print(i.get_coords())
print('action')
# trash_x, trash_y = i.get_coords()
# for ii in self.tsp_list:
temp_tsp = str(self.tsp_list[i])
temp_tsp = temp_tsp.strip("()")
temp_tsp = temp_tsp.split(",")
trash_x = int(temp_tsp[0])
trash_y = int(temp_tsp[1])
print(trash_x, trash_y)
action = a_star_controller.get_actions_for_target_coords(trash_x, trash_y, self)
print(action)
self.t.startAiController(action)
print('')
print('--rozpoczecie sortowania smietnika--')
dir = "./resources/trash_dataset/test/all"
files = os.listdir(dir)
for j in range(0, 10):
random = randint(0, 48)
file = files[random]
result = prediction.getPrediction(dir + '/' + file, 'trained_nn_20.pth')
img = pg.image.load(dir + '/' + file).convert_alpha()
img = pg.transform.scale(img, (128, 128))
offset_x, offset_y = self.camera.offset()
trash = Trash(img, math.floor(-offset_x * TILESIZE), math.floor(-offset_y * TILESIZE), 128, 128)
self.trashDisplay.empty()
self.trashDisplay.add(trash)
self.text_display = result
self.draw()
pg.time.wait(100)
self.text_display = ''
self.trashDisplay.empty()
self.draw()
# print(self.positive_actions[0])
# self.t.startAiController(self.positive_actions[0])
def init_TSP(self):
city_list =[]
for i in self.positive_decision:
trash_x, trash_y = i.get_coords()
# city_list.append(TSP.City(x=int(trash_x), y=int(trash_y), array=self.mapArray))
city_list.append(TSP.City(x=trash_x, y=trash_y, array=self.mapArray))
# dist = a_star.get_cost
self.tsp_list = TSP.geneticAlgorithmPlot(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=300, array=self.mapArray)
print(self.tsp_list)
def load_data(self):
game_folder = os.path.dirname(__file__)
img_folder = os.path.join(game_folder, 'resources/textures')
self.player_img = pg.image.load(os.path.join(img_folder, PLAYER_IMG)).convert_alpha()
self.player_img = pg.transform.scale(self.player_img, (PLAYER_WIDTH, PLAYER_HEIGHT))
def run(self):
# game loop - set self.playing = False to end the game
self.playing = True
self.init_decision_tree()
self.init_TSP()
self.decsion_tree_move()
while self.playing:
self.dt = self.clock.tick(FPS) / 1000.0
self.events()
self.update()
self.draw()
def quit(self):
pg.quit()
sys.exit()
def update(self):
# update portion of the game loop
self.agentSprites.update()
self.camera.update(self.player)
# pygame.display.update()
def draw(self):
# display fps as window title
pg.display.set_caption("{:.2f}".format(self.clock.get_fps()))
# rerender map
map.render_tiles(self.roadTiles, self.screen, self.camera)
map.render_tiles(self.wallTiles, self.screen, self.camera, self.debug_mode)
map.render_tiles(self.trashbinTiles, self.screen, self.camera)
map.render_tiles(self.trashDisplay, self.screen, self.camera)
# draw text
text_surface = pg.font.SysFont('Comic Sans MS', 30).render(self.text_display, False, (255, 255, 255))
self.screen.blit(text_surface, (0, 128))
# rerender additional sprites
for sprite in self.agentSprites:
self.screen.blit(sprite.image, self.camera.apply(sprite))
if self.debug_mode:
pg.draw.rect(self.screen, CYAN, self.camera.apply_rect(sprite.hit_rect), 1)
# self.player.hud_group.draw(self.screen)
# finally update screen
pg.display.flip()
def events(self):
for event in pg.event.get():
if event.type == pg.QUIT:
self.quit()
if event.type == pg.KEYDOWN:
if event.key == pg.K_ESCAPE:
self.quit()
if event.key == pg.K_h:
self.debug_mode = not self.debug_mode
if event.type == pg.MOUSEBUTTONUP:
pos = pg.mouse.get_pos()
offset_x, offset_y = self.camera.offset()
clicked_coords = [math.floor(pos[0] / TILESIZE) - offset_x, math.floor(pos[1] / TILESIZE) - offset_y]
actions = a_star_controller.get_actions_by_coords(clicked_coords[0], clicked_coords[1], self)
if (actions != None):
self.t.startAiController(actions)
# create the game object
if __name__ == "__main__":
g = Game()
g.run()
g.show_go_screen()

View File

@ -1,76 +1,79 @@
from data_structures.heap import Heap
from path_search_algorthms import a_star_utils as utils
def get_cost(start_x: int, start_y: int, target_x: int, target_y: int, array):
actions = search_path(start_x, start_y, utils.Rotation.NONE, target_x, target_y, array)
if actions is None:
return 1
return len(actions)
def search_path(start_x: int, start_y: int, agent_rotation: utils.Rotation, target_x: int, target_y: int, array):
start_node = utils.Node(start_x, start_y, agent_rotation)
target_node = utils.Node(target_x, target_y, utils.Rotation.NONE)
# heap version
# nodes for check
search_list = Heap()
search_list.append(start_node, 0)
# checked nodes
searched_list: list[(int, int)] = []
while (search_list.length() > 0):
node: utils.Node = search_list.take_first()
searched_list.append((node.x, node.y))
# check for target node
if ((node.x, node.y) == (target_x, target_y)):
return trace_path(node)
# neightbours processing
neighbours = utils.get_neighbours(node, searched_list, array)
for neighbour in neighbours:
# calculate new g cost for neightbour (start -> node -> neightbour)
new_neighbour_cost = node.g_cost + utils.get_neighbour_cost(node, neighbour)
if (new_neighbour_cost < neighbour.g_cost or not search_list.contains(neighbour)):
# replace cost and set parent node
neighbour.g_cost = new_neighbour_cost
neighbour.h_cost = utils.get_h_cost(neighbour, target_node)
neighbour.parent = node
# add to search
if (not search_list.contains(neighbour)):
search_list.append(neighbour, neighbour.f_cost())
def trace_path(end_node: utils.Node):
path = []
node = end_node
# set final rotation of end_node because we don't do it before
node.rotation = utils.get_needed_rotation(node.parent, node)
while (node.parent != False):
if (node.parent == utils.Rotation.NONE):
path += "forward"
else:
path += utils.get_move(node.parent, node)
node = node.parent
# delete move on initial tile
path.pop()
# we found path from end, so we need to reverse it (get_move reverse move words)
path.reverse()
# last forward to destination
path.append("forward")
return path
from data_structures.heap import Heap
from path_search_algorthms import a_star_utils as utils
def get_cost(start_x: int, start_y: int, target_x: int, target_y: int, array):
actions = search_path(start_x, start_y, utils.Rotation.NONE, target_x, target_y, array)
print('length')
if actions is None:
print('0')
return 1
print(len(actions))
return len(actions)
def search_path(start_x: int, start_y: int, agent_rotation: utils.Rotation, target_x: int, target_y: int, array):
start_node = utils.Node(start_x, start_y, agent_rotation)
target_node = utils.Node(target_x, target_y, utils.Rotation.NONE)
# heap version
# nodes for check
search_list = Heap()
search_list.append(start_node, 0)
# checked nodes
searched_list: list[(int, int)] = []
while (search_list.length() > 0):
node: utils.Node = search_list.take_first()
searched_list.append((node.x, node.y))
# check for target node
if ((node.x, node.y) == (target_x, target_y)):
return trace_path(node)
# neightbours processing
neighbours = utils.get_neighbours(node, searched_list, array)
for neighbour in neighbours:
# calculate new g cost for neightbour (start -> node -> neightbour)
new_neighbour_cost = node.g_cost + utils.get_neighbour_cost(node, neighbour)
if (new_neighbour_cost < neighbour.g_cost or not search_list.contains(neighbour)):
# replace cost and set parent node
neighbour.g_cost = new_neighbour_cost
neighbour.h_cost = utils.get_h_cost(neighbour, target_node)
neighbour.parent = node
# add to search
if (not search_list.contains(neighbour)):
search_list.append(neighbour, neighbour.f_cost())
def trace_path(end_node: utils.Node):
path = []
node = end_node
# set final rotation of end_node because we don't do it before
node.rotation = utils.get_needed_rotation(node.parent, node)
while (node.parent != False):
if (node.parent == utils.Rotation.NONE):
path += "forward"
else:
path += utils.get_move(node.parent, node)
node = node.parent
# delete move on initial tile
path.pop()
# we found path from end, so we need to reverse it (get_move reverse move words)
path.reverse()
# last forward to destination
path.append("forward")
return path