Trashmaster/path_search_algorthms/a_star.py
aliaksei-kudravets 29a11547f4 a star1.0
2022-05-06 12:27:18 +02:00

112 lines
3.5 KiB
Python

from data_structures.heap import Heap
from path_search_algorthms import a_star_utils as utils
def search_path(start_x: int, start_y: int, agent_rotation: utils.Rotation, target_x: int, target_y: int, array):
start_node = utils.Node(start_x, start_y, agent_rotation)
target_node = utils.Node(target_x, target_y, utils.Rotation.NONE)
# heap version
# nodes for check
search_list = Heap()
search_list.append(start_node, 0)
# checked nodes
searched_list: list[(int, int)] = []
while (search_list.length() > 0):
node: utils.Node = search_list.take_first()
searched_list.append((node.x, node.y))
# check for target node
if ((node.x, node.y) == (target_x, target_y)):
return trace_path(node)
# neightbours processing
neighbours = utils.get_neighbours(node, searched_list, array)
for neighbour in neighbours:
# calculate new g cost for neightbour (start -> node -> neightbour)
new_neighbour_cost = node.g_cost + utils.get_neighbour_cost(node, neighbour)
if (new_neighbour_cost < neighbour.g_cost or not search_list.contains(neighbour)):
# replace cost and set parent node
neighbour.g_cost = new_neighbour_cost
neighbour.h_cost = utils.get_h_cost(neighbour, target_node)
neighbour.parent = node
# add to search
if(not search_list.contains(neighbour)):
search_list.append(neighbour, neighbour.f_cost())
# array version
# nodes for check
# search_list = [start_node]
# checked nodes
# searched_list: list[(int, int)] = []
# while (len(search_list) > 0):
# node = search_list[0]
# # find cheapest node in search_list
# for i in range(1, len(search_list)):
# if (search_list[i].f_cost() <= node.f_cost()):
# if(search_list[i].h_cost < node.h_cost):
# node = search_list[i]
# search_list.remove(node)
# searched_list.append((node.x, node.y))
# # check for target node
# if ((node.x, node.y) == (target_x, target_y)):
# return trace_path(node)
# # neightbours processing
# neighbours = utils.get_neighbours(node, searched_list, array)
# for neighbour in neighbours:
# # calculate new g cost for neightbour (start -> node -> neightbour)
# new_neighbour_cost = node.g_cost + utils.get_neighbour_cost(node, neighbour)
# if (new_neighbour_cost < neighbour.g_cost or neighbour not in search_list):
# # replace cost and set parent node
# neighbour.g_cost = new_neighbour_cost
# neighbour.h_cost = utils.get_h_cost(neighbour, target_node)
# neighbour.parent = node
# # add to search
# if(neighbour not in search_list):
# search_list.append(neighbour)
def trace_path(end_node: utils.Node):
path = []
node = end_node
# set final rotation of end_node because we don't do it before
node.rotation = utils.get_needed_rotation(node.parent, node)
while (node.parent != 0):
move = utils.get_move(node.parent, node)
path += move
node = node.parent
# delete move on initial tile
path.pop()
# we found path from end, so we need to reverse it (get_move reverse move words)
path.reverse()
# last forward to destination
path.append("forward")
return path