AkwariumRoom-Reupload/dependencies/glm/gtx/simd_quat.hpp
2023-01-29 16:27:16 +01:00

308 lines
8.2 KiB
C++

/// @ref gtx_simd_quat
/// @file glm/gtx/simd_quat.hpp
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_quat GLM_GTX_simd_quat
/// @ingroup gtx
///
/// @brief SIMD implementation of quat type.
///
/// <glm/gtx/simd_quat.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../glm.hpp"
#include "../gtc/quaternion.hpp"
#include "../gtx/fast_trigonometry.hpp"
#if GLM_ARCH != GLM_ARCH_PURE
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
# include "../gtx/simd_mat4.hpp"
#else
# error "GLM: GLM_GTX_simd_quat requires compiler support of SSE2 through intrinsics"
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTX_simd_quat extension included")
# pragma message("GLM: GLM_GTX_simd_quat extension is deprecated and will be removed in GLM 0.9.9. Use GLM_GTC_quaternion instead and use compiler SIMD arguments.")
#endif
// Warning silencer for nameless struct/union.
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(push)
# pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
#endif
namespace glm{
namespace detail
{
GLM_ALIGNED_STRUCT(16) fquatSIMD
{
typedef float value_type;
typedef std::size_t size_type;
typedef fquatSIMD type;
typedef tquat<bool, defaultp> bool_type;
typedef tquat<float, defaultp> pure_type;
#ifdef GLM_SIMD_ENABLE_XYZW_UNION
union
{
__m128 Data;
struct {float x, y, z, w;};
};
#else
__m128 Data;
#endif
//////////////////////////////////////
// Implicit basic constructors
fquatSIMD() GLM_DEFAULT_CTOR;
fquatSIMD(fquatSIMD const & q) GLM_DEFAULT;
fquatSIMD(__m128 const & Data);
//////////////////////////////////////
// Explicit basic constructors
explicit fquatSIMD(
ctor);
explicit fquatSIMD(
float const & w,
float const & x,
float const & y,
float const & z);
explicit fquatSIMD(
quat const & v);
explicit fquatSIMD(
vec3 const & eulerAngles);
//////////////////////////////////////
// Unary arithmetic operators
fquatSIMD& operator= (fquatSIMD const & q) GLM_DEFAULT;
fquatSIMD& operator*=(float const & s);
fquatSIMD& operator/=(float const & s);
};
//////////////////////////////////////
// Arithmetic operators
detail::fquatSIMD operator- (
detail::fquatSIMD const & q);
detail::fquatSIMD operator+ (
detail::fquatSIMD const & q,
detail::fquatSIMD const & p);
detail::fquatSIMD operator* (
detail::fquatSIMD const & q,
detail::fquatSIMD const & p);
detail::fvec4SIMD operator* (
detail::fquatSIMD const & q,
detail::fvec4SIMD const & v);
detail::fvec4SIMD operator* (
detail::fvec4SIMD const & v,
detail::fquatSIMD const & q);
detail::fquatSIMD operator* (
detail::fquatSIMD const & q,
float s);
detail::fquatSIMD operator* (
float s,
detail::fquatSIMD const & q);
detail::fquatSIMD operator/ (
detail::fquatSIMD const & q,
float s);
}//namespace detail
/// @addtogroup gtx_simd_quat
/// @{
typedef glm::detail::fquatSIMD simdQuat;
//! Convert a simdQuat to a quat.
/// @see gtx_simd_quat
quat quat_cast(
detail::fquatSIMD const & x);
//! Convert a simdMat4 to a simdQuat.
/// @see gtx_simd_quat
detail::fquatSIMD quatSIMD_cast(
detail::fmat4x4SIMD const & m);
//! Converts a mat4 to a simdQuat.
/// @see gtx_simd_quat
template <typename T, precision P>
detail::fquatSIMD quatSIMD_cast(
tmat4x4<T, P> const & m);
//! Converts a mat3 to a simdQuat.
/// @see gtx_simd_quat
template <typename T, precision P>
detail::fquatSIMD quatSIMD_cast(
tmat3x3<T, P> const & m);
//! Convert a simdQuat to a simdMat4
/// @see gtx_simd_quat
detail::fmat4x4SIMD mat4SIMD_cast(
detail::fquatSIMD const & q);
//! Converts a simdQuat to a standard mat4.
/// @see gtx_simd_quat
mat4 mat4_cast(
detail::fquatSIMD const & q);
/// Returns the length of the quaternion.
///
/// @see gtx_simd_quat
float length(
detail::fquatSIMD const & x);
/// Returns the normalized quaternion.
///
/// @see gtx_simd_quat
detail::fquatSIMD normalize(
detail::fquatSIMD const & x);
/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
///
/// @see gtx_simd_quat
float dot(
detail::fquatSIMD const & q1,
detail::fquatSIMD const & q2);
/// Spherical linear interpolation of two quaternions.
/// The interpolation is oriented and the rotation is performed at constant speed.
/// For short path spherical linear interpolation, use the slerp function.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtx_simd_quat
/// @see - slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD mix(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Linear interpolation of two quaternions.
/// The interpolation is oriented.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined in the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtx_simd_quat
detail::fquatSIMD lerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Spherical linear interpolation of two quaternions.
/// The interpolation always take the short path and the rotation is performed at constant speed.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtx_simd_quat
detail::fquatSIMD slerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Faster spherical linear interpolation of two unit length quaternions.
///
/// This is the same as mix(), except for two rules:
/// 1) The two quaternions must be unit length.
/// 2) The interpolation factor (a) must be in the range [0, 1].
///
/// This will use the equivalent to fastAcos() and fastSin().
///
/// @see gtx_simd_quat
/// @see - mix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD fastMix(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Identical to fastMix() except takes the shortest path.
///
/// The same rules apply here as those in fastMix(). Both quaternions must be unit length and 'a' must be
/// in the range [0, 1].
///
/// @see - fastMix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
/// @see - slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD fastSlerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Returns the q conjugate.
///
/// @see gtx_simd_quat
detail::fquatSIMD conjugate(
detail::fquatSIMD const & q);
/// Returns the q inverse.
///
/// @see gtx_simd_quat
detail::fquatSIMD inverse(
detail::fquatSIMD const & q);
/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians.
/// @param axis Axis of the quaternion, must be normalized.
///
/// @see gtx_simd_quat
detail::fquatSIMD angleAxisSIMD(
float const & angle,
vec3 const & axis);
/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians.
/// @param x x component of the x-axis, x, y, z must be a normalized axis
/// @param y y component of the y-axis, x, y, z must be a normalized axis
/// @param z z component of the z-axis, x, y, z must be a normalized axis
///
/// @see gtx_simd_quat
detail::fquatSIMD angleAxisSIMD(
float const & angle,
float const & x,
float const & y,
float const & z);
// TODO: Move this to somewhere more appropriate. Used with fastMix() and fastSlerp().
/// Performs the equivalent of glm::fastSin() on each component of the given __m128.
__m128 fastSin(__m128 x);
/// @}
}//namespace glm
#include "simd_quat.inl"
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
#endif//(GLM_ARCH != GLM_ARCH_PURE)