{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Definiowanie funkcji i sieci neuronowej" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "def sigmoid(x, e = 2.7183):\n", " return 1 / (1 + e**(-x))\n", "\n", "\n", "def sigmoid_derivative(x):\n", " return x * (1 - x)\n", "\n", "\n", "def tanh(x):\n", " return np.tanh(x)\n", "\n", "def tanh_derivative(x):\n", " return 1 - np.tanh(x) ** 2\n", "\n", "def relu(x):\n", " return np.maximum(0, x)\n", "\n", "def relu_derivative(x):\n", " return np.where(x <= 0, 0, 1)\n", "\n", "\n", "def softmax(x):\n", " exps = np.exp(x - np.max(x, axis=1, keepdims=True))\n", " return exps/np.sum(exps, axis=1, keepdims=True)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class NeuralNetwork:\n", " def __init__(self, input_size, hidden_size, output_size, \n", " act_func, loss_func, \n", " learning_rate, epochs):\n", " self.input_size = input_size\n", " self.hidden_size = hidden_size\n", " self.output_size = output_size\n", " self.learning_rate = learning_rate\n", " self.epochs = epochs\n", " self.activation_func = act_func\n", " self.loss_func = loss_func\n", "\n", " self.w1 = np.random.randn(self.input_size, self.hidden_size)\n", " self.w2 = np.random.randn(self.hidden_size, self.output_size)\n", "\n", " self.b1 = np.zeros((1, self.hidden_size))\n", " self.b2 = np.zeros((1, self.output_size))\n", "\n", " self.train_loss = []\n", " self.test_loss = []\n", "\n", "\n", " def predict(self, X):\n", " self.z1 = np.dot(X, self.w1) + self.b1\n", " if self.activation_func == 'sigmoid':\n", " self.a1 = sigmoid(self.z1)\n", " elif self.activation_func == 'relu':\n", " self.a1 = relu(self.z1)\n", " elif self.activation_func == 'tanh':\n", " self.a1 = tanh(self.z1)\n", " else:\n", " raise ValueError('Nieprawidłowa funkcja aktywacji')\n", "\n", " self.z2 = np.dot(self.a1, self.w2) + self.b2\n", " if self.loss_func == 'categorical_crossentropy':\n", " self.a2 = softmax(self.z2)\n", " else:\n", " if self.activation_func == 'sigmoid':\n", " self.a2 = sigmoid(self.z2)\n", " elif self.activation_func == 'relu':\n", " self.a2 = relu(self.z2)\n", " elif self.activation_func == 'tanh':\n", " self.a2 = tanh(self.z2)\n", " else:\n", " raise ValueError('Nieprawidłowa funkcja aktywacji')\n", " return self.a2\n", "\n", "\n", " def backward(self, X, Y):\n", " m = X.shape[0]\n", " \n", " self.dz2 = self.a2 - Y\n", "\n", " self.dw2 = (1 / m) * np.dot(self.a1.T, self.dz2)\n", " self.db2 = (1 / m) * np.sum(self.dz2, axis=0, keepdims=True)\n", " if self.activation_func == 'sigmoid':\n", " self.dz1 = np.dot(self.dz2, self.w2.T) * sigmoid_derivative(self.a1)\n", " elif self.activation_func == 'relu':\n", " self.dz1 = np.dot(self.dz2, self.w2.T) * relu_derivative(self.a1)\n", " elif self.activation_func == 'tanh':\n", " self.dz1 = np.dot(self.dz2, self.w2.T) * tanh_derivative(self.a1)\n", " else:\n", " raise ValueError('Nieprawidłowa funkcja aktywacji')\n", " self.dw1 = (1 / m) * np.dot(X.T, self.dz1)\n", " self.db1 = (1 / m) * np.sum(self.dz1, axis=0, keepdims=True)\n", "\n", " # Zaktualizuj wagi i przesunięcia\n", " self.w2 -= self.learning_rate * self.dw2\n", " self.b2 -= self.learning_rate * self.db2\n", " self.w1 -= self.learning_rate * self.dw1\n", " self.b1 -= self.learning_rate * self.db1\n", "\n", " def loss(self, y_true, y_pred):\n", " epsilon = 1e-10 \n", " y_pred = np.clip(y_pred, epsilon, 1. - epsilon)\n", " if self.loss_func == 'mse':\n", " return np.mean((y_true - y_pred) ** 2)\n", " elif self.loss_func == 'log_loss':\n", " return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))\n", " elif self.loss_func == 'categorical_crossentropy':\n", " return -np.mean(y_true * np.log(y_pred))\n", " else:\n", " raise ValueError('Nieprawidłowa funkcja straty')\n", "\n", "\n", " def fit(self, X_train, y_train, X_test, y_test):\n", " for _ in range(self.epochs):\n", " self.predict(X_train)\n", " self.backward(X_train, y_train)\n", "\n", " train_loss = self.loss(y_train, self.a2)\n", " self.train_loss.append(train_loss)\n", "\n", " self.predict(X_test)\n", " test_loss = self.loss(y_test, self.a2)\n", " self.test_loss.append(test_loss)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import re\n", "\n", "def tokenize_str(str_dirty):\n", " punctuation = '!\"#$%&\\'()*+,-./:;<=>?@[\\\\]^_`{|}~'\n", " new_str = str_dirty.lower()\n", " new_str = re.sub(' +', ' ', new_str)\n", " for char in punctuation:\n", " new_str = new_str.replace(char,'')\n", " return new_str.split(' ')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import csv\n", "\n", "def load_data(path):\n", " with open(path, errors=\"ignore\") as file:\n", " tsv_file = csv.reader(file, delimiter=\"\\t\")\n", " file = list(tsv_file)\n", "\n", " data = []\n", " labels = []\n", "\n", " for elem in file:\n", " labels.append(int(elem[0]))\n", " data.append(tokenize_str(elem[1]))\n", "\n", " return data, labels\n", "\n", "def load_test_data(path):\n", " with open(path, errors=\"ignore\") as file:\n", " tsv_file = csv.reader(file, delimiter=\"\\t\")\n", " data = list(tsv_file)\n", " data = [tokenize_str(elem[0]) for elem in data]\n", " return data\n", "\n", "def load_test_labels(path):\n", " with open(path, errors=\"ignore\") as file:\n", " tsv_file = csv.reader(file, delimiter=\"\\t\")\n", " data = list(tsv_file)\n", " data = [int(elem[0]) for elem in data]\n", " \n", " return data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Ładowanie danych" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "TRAIN_PATH = \"./sport-text-classification-ball-isi-public/train/train.tsv\"\n", "TEST_DEV_DATA = \"./sport-text-classification-ball-isi-public/dev-0/in.tsv\"\n", "TEST_A_DATA = \"./sport-text-classification-ball-isi-public/test-A/in.tsv\"\n", "TEST_DEV_LABELS = \"./sport-text-classification-ball-isi-public/dev-0/expected.tsv\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "X_train, y_train = load_data(TRAIN_PATH)\n", "X_test, y_test = load_test_data(TEST_DEV_DATA), load_test_labels(TEST_DEV_LABELS)\n", "X_test2 = load_test_data(TEST_A_DATA)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from gensim.models import KeyedVectors\n", "\n", "word2vec = KeyedVectors.load(\"word2vec_100_3_polish.bin\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from gensim.models import KeyedVectors\n", "from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric, remove_stopwords\n", "\n", "def document_to_vector(document, model):\n", " words = document\n", " word_vectors = [model[word] for word in words if word in model]\n", " if len(word_vectors) == 0:\n", " return np.zeros(model.vector_size)\n", " return np.mean(word_vectors, axis=0)\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "X_train = [document_to_vector(doc, word2vec) for doc in X_train]\n", "X_test = [document_to_vector(doc, word2vec) for doc in X_test]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "X_train = np.array(X_train)\n", "X_test = np.array(X_test)\n", "y_train = np.array(y_train).reshape(-1, 1)\n", "y_test = np.array(y_test).reshape(-1, 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Testy parametrów sieci" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def accuracy(y_true, y_pred):\n", " predictions = (y_pred > 0.5).astype(int)\n", " return np.mean(predictions == y_true)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "input_size = X_train.shape[1]\n", "hidden_size = 64\n", "output_size = 1 \n", "learning_rate = 0.01\n", "epochs = 1000\n", "\n", "act_functions = ['relu', 'tanh', 'sigmoid']\n", "loss_functions = ['categorical_crossentropy', 'mse', 'log_loss']" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def run_and_test_model(act_func, loss_func):\n", " nn = NeuralNetwork(input_size, hidden_size, output_size, \n", " act_func=act_func, loss_func=loss_func, \n", " learning_rate=learning_rate, epochs=epochs)\n", " \n", " nn.fit(X_train, y_train, X_test, y_test)\n", " \n", " test_predictions = nn.predict(X_test)\n", " test_acc = accuracy(y_test, test_predictions)\n", " print(f'Dokładność na zbiorze {act_func} - {loss_func}: {test_acc * 100:.2f}%')\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dokładność na zbiorze relu - categorical_crossentropy: 63.63%\n", "Dokładność na zbiorze relu - mse: 71.77%\n", "Dokładność na zbiorze relu - log_loss: 43.56%\n", "Dokładność na zbiorze tanh - categorical_crossentropy: 63.63%\n", "Dokładność na zbiorze tanh - mse: 71.46%\n", "Dokładność na zbiorze tanh - log_loss: 72.21%\n", "Dokładność na zbiorze sigmoid - categorical_crossentropy: 63.63%\n", "Dokładność na zbiorze sigmoid - mse: 71.53%\n", "Dokładność na zbiorze sigmoid - log_loss: 65.00%\n" ] } ], "source": [ "for act in act_functions:\n", " for loss in loss_functions:\n", " run_and_test_model(act, loss)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "X_test2 = [document_to_vector(doc, word2vec) for doc in X_test2]\n", "\n", "X_test2 = np.array(X_test)\n", "y_test2 = np.array(y_test).reshape(-1, 1)\n", "\n", "nn = NeuralNetwork(input_size, hidden_size, output_size, \n", " act_func='relu', loss_func='mse', \n", " learning_rate=learning_rate, epochs=epochs)\n", "\n", "nn.fit(X_train, y_train, X_test, y_test)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def save_predictions_to_tsv(predictions, filename):\n", " np.savetxt(filename, predictions, fmt='%d', delimiter='\\t')\n", "\n", "test_predictions = nn.predict(X_test)\n", "binary_predictions = (test_predictions >= 0.5).astype(int)\n", "save_predictions_to_tsv(binary_predictions, './sport-text-classification-ball-isi-public/dev-0/out.tsv')\n", "\n", "test_predictions2 = nn.predict(X_test2)\n", "binary_predictions2 = (test_predictions2 >= 0.5).astype(int)\n", "save_predictions_to_tsv(binary_predictions2, './sport-text-classification-ball-isi-public/test-A/out.tsv')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 4 }