ml-2023SZ/zad7.py
2024-01-04 21:36:25 +01:00

38 lines
1.2 KiB
Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
data = pd.read_csv('communities.data',
header=None,
delimiter=",",
na_values=["?"]
)
data = data.dropna()
data = data.drop(columns=[3])
x = data.iloc[:, :-1]
y = data.iloc[:, -1]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model = LinearRegression()
model_ridge = Ridge(alpha=1.0)
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)
model.fit(x_train_scaled, y_train)
model_ridge.fit(x_train_scaled, y_train)
y_pred = model.predict(x_test_scaled)
y_pred_ridge = model_ridge.predict(x_test_scaled)
rmse = mean_squared_error(y_test, y_pred, squared=False)
rmse_ridge = mean_squared_error(y_test, y_pred_ridge, squared=False)
print("Błąd średniokwadratowy dla regresji liniowej:", rmse)
print("Błąd średniokwadratowy dla regresji z regularyzacją:", rmse_ridge)