neural network (incomplete)

This commit is contained in:
Hourglass 2023-06-05 14:43:53 +02:00
parent 1f7b9c780c
commit 3dea3909dd
8 changed files with 85 additions and 2 deletions

View File

@ -6,7 +6,7 @@ MAX_ROWS = 15
MAX_COLS = 25 MAX_COLS = 25
mapping = { mapping = {
'd': 10, 'd': 2,
's': 20, 's': 20,
'r': 999 'r': 999
} }

View File

@ -27,7 +27,7 @@ def treelearn():
# visualize and display decision tree # visualize and display decision tree
data = tree.export_graphviz(decision_tree, out_file=None, feature_names=attributes) data = tree.export_graphviz(decision_tree, out_file=None, feature_names=attributes)
graph = pydotplus.graph_from_dot_data(data) graph = pydotplus.graph_from_dot_data(data)
graph.write_png(os.path.join('resources', 'decision_tree.png')) # graph.write_png(os.path.join('resources', 'decision_tree.png'))
img = pltimg.imread(os.path.join('resources', 'decision_tree.png')) img = pltimg.imread(os.path.join('resources', 'decision_tree.png'))
imgplot = plt.imshow(img) imgplot = plt.imshow(img)

58
neural.py Normal file
View File

@ -0,0 +1,58 @@
import tensorflow as tf
import glob
import numpy as np
import os
from PIL import Image
from sklearn.model_selection import train_test_split
from tensorflow import keras
images = []
labels = []
class_names = ['fragile', 'priority', 'skull']
image_dir = 'C:\\Users\\mateu\\Desktop\\SI projekt\\resources'
image_size = (32, 32)
for class_index, class_name in enumerate(class_names):
class_path = os.path.join(image_dir, class_name)
file_names = os.listdir(class_path)
print(class_path)
for file_name in file_names:
image_path = os.path.join(class_path, file_name)
image = Image.open(image_path).convert('L')
image = image.resize(image_size)
image_array = np.array(image) / 255.0
images.append(image_array)
labels.append(class_index)
images = np.array(images)
labels = np.array(labels)
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
num_classes = 3
y_train_encoded = keras.utils.to_categorical(y_train, num_classes)
y_test_encoded = keras.utils.to_categorical(y_test, num_classes)
model = keras.Sequential([
keras.layers.Flatten(input_shape=image_size),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
batch_size = 32
epochs = 10
model.fit(X_train, y_train_encoded, batch_size=batch_size, epochs=epochs,
validation_data=(X_test, y_test_encoded))
test_loss, test_acc = model.evaluate(X_test, y_test_encoded)
print('Test accuracy:', test_acc)
predictions = model.predict(X_test)
model.save('resources/model.h5')

Binary file not shown.

BIN
resources/model.h5 Normal file

Binary file not shown.

BIN
resources/package/8.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

BIN
resources/package/9.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

25
test.py Normal file
View File

@ -0,0 +1,25 @@
import numpy as np
from PIL import Image
from tensorflow import keras
saved_model_path = 'resources/model.h5'
model = keras.models.load_model(saved_model_path)
image_path = 'resources/indeks-fragile.png'
image_size = (32, 32)
image = Image.open(image_path).convert('L')
image = image.resize(image_size)
image_array = np.array(image) / 255.0
input_data = np.expand_dims(image_array, axis=0)
predictions = model.predict(input_data)
predicted_class = np.argmax(predictions, axis=1)
class_names = ['fragile', 'priority', 'skull']
predicted_label = class_names[predicted_class[0]]
print('Predicted class:', predicted_label)