dataset, neural network

This commit is contained in:
s452730 2022-09-08 02:03:01 +02:00
parent 8c5c5c48f0
commit 03d74b5aee
3 changed files with 99 additions and 0 deletions

14
main.py
View File

@ -1,12 +1,16 @@
# from collections import deque
from queue import PriorityQueue
import matplotlib.pyplot as plt
from neural import *
from path_algorithms.a_star import a_star
# from path_algorithms.bfs import bfs
from rubbish import *
from tree import evaluate_values, trash_selection
from truck import Truck
from surface import *
from PIL import Image
from genetic import genetic
RESOLUTION = 900
@ -53,6 +57,9 @@ for i in range(15):
rubbish_list.append(Rubbish(screen, j * 60, i * 60))
path = []
X,y = create_training_data()
model = learn_neural_network(X,y)
gen = [(truck.y / 60, truck.x / 60)]
fl = 0
length = []
@ -118,6 +125,13 @@ while True:
# the decision that takes what to do with the garbage
if not path and order:
number = np.random.randint(2077)
path_img = "images/bbb"
img = Image.open(path_img+'/'+str(number)+'.jpg')
img.show()
prediction = predict(model,path_img+'/'+str(number)+'.jpg')
result(prediction)
data = rubbish_list[order[0]].data_for_decision_tree()
print(f'----------\n'
f'Characteristics of the garbage we met:\n'

85
neural.py Normal file
View File

@ -0,0 +1,85 @@
import math
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Activation, Flatten
from keras.models import Sequential
from tqdm import tqdm
def create_training_data():
DATADIR = "images"
CATEGORIES = ["plastic", "other"]
IMG_SIZE = 100
training_data = []
for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category) # 0 - plastic, 1 - other
for img in tqdm(os.listdir(path)):
try:
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num])
except Exception as e:
pass
X = []
y = []
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y = np.array(y)
print("Training data created!")
return X,y
def learn_neural_network(X,y):
X = X/255.0
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=X.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X, y, batch_size=1, epochs=1, validation_batch_size=0.1)
return model
def prepare_img(filepath):
IMG_SIZE = 100
img_array = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1) / 255
def predict(model, filepath):
return model.predict([prepare_img(filepath)])
def result(prediction):
if prediction[0][0] >= 0.65:
print(prediction)
print(math.ceil(prediction[0][0]))
print('No plastic')
elif prediction[0][0] < 0.65:
print(prediction)
print(math.floor(prediction[0][0]))
print("Plastic")

Binary file not shown.