results of training
This commit is contained in:
parent
4125e8b09f
commit
a254e6658a
BIN
trash.xlsx
Normal file
BIN
trash.xlsx
Normal file
Binary file not shown.
50
tree.py
50
tree.py
@ -1,12 +1,11 @@
|
|||||||
import random
|
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.tree import DecisionTreeClassifier
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
|
||||||
|
from rubbish import *
|
||||||
|
|
||||||
|
|
||||||
def evaluate_values(values):
|
def evaluate_values(values):
|
||||||
|
|
||||||
data = []
|
data = []
|
||||||
if values[0] == 10:
|
if values[0] == 10:
|
||||||
data.append(10)
|
data.append(10)
|
||||||
@ -124,7 +123,7 @@ def evaluate_values(values):
|
|||||||
|
|
||||||
|
|
||||||
def trash_selection(prefer):
|
def trash_selection(prefer):
|
||||||
df = pd.read_excel('data.xlsx', sheet_name='list1')
|
df = pd.read_excel('trash.xlsx', sheet_name='Sheet1')
|
||||||
# print(df)
|
# print(df)
|
||||||
|
|
||||||
d = {'paper': 1, 'wood': 2, 'glass': 3, 'metal': 4, 'plastic': 5}
|
d = {'paper': 1, 'wood': 2, 'glass': 3, 'metal': 4, 'plastic': 5}
|
||||||
@ -143,10 +142,51 @@ def trash_selection(prefer):
|
|||||||
|
|
||||||
clf = DecisionTreeClassifier(criterion='entropy')
|
clf = DecisionTreeClassifier(criterion='entropy')
|
||||||
|
|
||||||
|
# create a decisions tree in terminal
|
||||||
# model = clf.fit(X, y)
|
# model = clf.fit(X, y)
|
||||||
# text_representation = tree.export_text(clf)
|
# text_representation = tree.export_text(clf)
|
||||||
# print(text_representation)
|
# print(text_representation)
|
||||||
|
|
||||||
clf = clf.fit(x_train, y_train)
|
clf = clf.fit(x_train, y_train)
|
||||||
|
answer = clf.predict([prefer])
|
||||||
|
|
||||||
return clf.predict([prefer])
|
# write results of training to the list
|
||||||
|
append_choice(answer, prefer, d, df)
|
||||||
|
|
||||||
|
return answer
|
||||||
|
|
||||||
|
|
||||||
|
def append_df_to_excel(df, excel_path):
|
||||||
|
df_excel = pd.read_excel(excel_path)
|
||||||
|
result = pd.concat([df_excel, df], ignore_index=True)
|
||||||
|
result.to_excel(excel_path, index=False)
|
||||||
|
|
||||||
|
|
||||||
|
def append_choice(answer, prefer, d, df):
|
||||||
|
new_row = prefer
|
||||||
|
new_row.append(list(d.keys())[list(d.values()).index(int(answer))])
|
||||||
|
if new_row[3] == 1:
|
||||||
|
new_row[3] = 'paper'
|
||||||
|
if new_row[3] == 2:
|
||||||
|
new_row[3] = 'wood'
|
||||||
|
if new_row[3] == 3:
|
||||||
|
new_row[3] = 'glass'
|
||||||
|
if new_row[3] == 4:
|
||||||
|
new_row[3] = 'metal'
|
||||||
|
if new_row[3] == 5:
|
||||||
|
new_row[3] = 'plastic'
|
||||||
|
|
||||||
|
if new_row[4] == 1:
|
||||||
|
new_row[4] = 'little'
|
||||||
|
if new_row[4] == 2:
|
||||||
|
new_row[4] = 'medium'
|
||||||
|
if new_row[4] == 3:
|
||||||
|
new_row[4] = 'huge'
|
||||||
|
if new_row[4] == 4:
|
||||||
|
new_row[4] = 'large'
|
||||||
|
|
||||||
|
data = {"weight": new_row[0], "density": new_row[1], "fragility": new_row[2], "material": new_row[3],
|
||||||
|
"size": new_row[4], "degradability": new_row[5], "renewability": new_row[6], "what to do": new_row[7]}
|
||||||
|
|
||||||
|
n_df = pd.DataFrame(data, index=[len(df) + 1])
|
||||||
|
append_df_to_excel(n_df, "trash.xlsx")
|
||||||
|
Loading…
Reference in New Issue
Block a user