IUM_07 - wrap create_model.py with sacred experiment
This commit is contained in:
parent
56cc31edd3
commit
2fca60f167
171
create_model.py
171
create_model.py
@ -4,90 +4,141 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
import pathlib
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
from sklearn.metrics import classification_report
|
||||
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
||||
|
||||
from NeuralNetwork import NeuralNetwork
|
||||
|
||||
# Seed for reproducibility
|
||||
torch.manual_seed(1234)
|
||||
from sacred import Experiment
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
|
||||
# Load data
|
||||
train = pd.read_csv('./datasets/train.csv')
|
||||
test = pd.read_csv('./datasets/test.csv')
|
||||
# Create new sacred experiment
|
||||
ex = Experiment("s464863")
|
||||
|
||||
# Split data
|
||||
X_train = train.drop(columns=['id', 'diagnosis']).values
|
||||
y_train = train['diagnosis'].values
|
||||
# Setup observers
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017', db_name='sacred'))
|
||||
|
||||
X_test = test.drop(columns=['id', 'diagnosis']).values
|
||||
y_test = test['diagnosis'].values
|
||||
@ex.config
|
||||
def config():
|
||||
# Default parameters
|
||||
hidden_size = 128
|
||||
|
||||
# Convert data to PyTorch tensors
|
||||
X_train = torch.FloatTensor(X_train)
|
||||
y_train = torch.FloatTensor(y_train).view(-1, 1)
|
||||
# Default learning parameters
|
||||
learning_rate = 0.001
|
||||
weight_decay = 0.001
|
||||
num_epochs = 1000
|
||||
|
||||
X_test = torch.FloatTensor(X_test)
|
||||
y_test = torch.FloatTensor(y_test).view(-1, 1)
|
||||
# Learning parameters from sys.argv
|
||||
if len(sys.argv) > 1:
|
||||
num_epochs = int(sys.argv[1])
|
||||
learning_rate = float(sys.argv[2])
|
||||
weight_decay = float(sys.argv[3])
|
||||
|
||||
# Parameters
|
||||
input_size = X_train.shape[1]
|
||||
hidden_size = 128
|
||||
@ex.automain
|
||||
def experiment(hidden_size, learning_rate, weight_decay, num_epochs, _run):
|
||||
# Seed for reproducibility
|
||||
torch.manual_seed(1234)
|
||||
|
||||
# Default parameters
|
||||
learning_rate = 0.001
|
||||
weight_decay = 0.001
|
||||
num_epochs = 1000
|
||||
# Load data with sacred
|
||||
train_data = ex.open_resource('./datasets/train.csv', "r")
|
||||
test_data = ex.open_resource('./datasets/test.csv', "r")
|
||||
|
||||
# Parameters from sys.argv
|
||||
if len(sys.argv) > 1:
|
||||
num_epochs = int(sys.argv[1])
|
||||
learning_rate = float(sys.argv[2])
|
||||
weight_decay = float(sys.argv[3])
|
||||
# Convert to pandas dataframe
|
||||
train = pd.read_csv(train_data)
|
||||
test = pd.read_csv(test_data)
|
||||
|
||||
# Model initialization
|
||||
model = NeuralNetwork(input_size, hidden_size)
|
||||
# Split data
|
||||
X_train = train.drop(columns=['id', 'diagnosis']).values
|
||||
y_train = train['diagnosis'].values
|
||||
|
||||
# Loss function and optimizer
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
||||
X_test = test.drop(columns=['id', 'diagnosis']).values
|
||||
y_test = test['diagnosis'].values
|
||||
|
||||
# Training loop
|
||||
model.train()
|
||||
# Convert data to PyTorch tensors
|
||||
X_train = torch.FloatTensor(X_train)
|
||||
y_train = torch.FloatTensor(y_train).view(-1, 1)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
# Zero the gradients
|
||||
optimizer.zero_grad()
|
||||
X_test = torch.FloatTensor(X_test)
|
||||
y_test = torch.FloatTensor(y_test).view(-1, 1)
|
||||
|
||||
# Forward pass
|
||||
outputs = model(X_train)
|
||||
# Parameters
|
||||
input_size = X_train.shape[1]
|
||||
|
||||
# Compute loss
|
||||
loss = criterion(outputs, y_train)
|
||||
# Model initialization
|
||||
model = NeuralNetwork(input_size, hidden_size)
|
||||
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
# Loss function and optimizer
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
||||
|
||||
# Update weights
|
||||
optimizer.step()
|
||||
# Training loop
|
||||
model.train()
|
||||
|
||||
# Print loss
|
||||
if (epoch + 1) % 100 == 0:
|
||||
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item()}')
|
||||
for epoch in range(num_epochs):
|
||||
# Zero the gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Test the model
|
||||
model.eval()
|
||||
# Forward pass
|
||||
outputs = model(X_train)
|
||||
|
||||
with torch.no_grad():
|
||||
y_pred = model(X_test)
|
||||
y_pred = np.where(y_pred > 0.5, 1, 0)
|
||||
print(classification_report(y_test, y_pred, target_names=['B', 'M']))
|
||||
# Compute loss
|
||||
loss = criterion(outputs, y_train)
|
||||
|
||||
# If directory models does not exist, create it
|
||||
if not os.path.exists('./models'):
|
||||
os.makedirs('./models')
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
|
||||
# Save the model
|
||||
torch.save(model, './models/model.pth')
|
||||
# Update weights
|
||||
optimizer.step()
|
||||
|
||||
# Print loss
|
||||
if (epoch + 1) % 100 == 0:
|
||||
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item()}')
|
||||
|
||||
# Test the model
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
|
||||
# Make predictions
|
||||
y_pred = model(X_test)
|
||||
y_pred = np.where(y_pred > 0.5, 1, 0)
|
||||
|
||||
# Calculate metrics
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
precision = precision_score(y_test, y_pred)
|
||||
recall = recall_score(y_test, y_pred)
|
||||
f1 = f1_score(y_test, y_pred)
|
||||
|
||||
# Save metrics to sacred
|
||||
_run.log_scalar("accuracy", accuracy)
|
||||
_run.log_scalar("precision", precision)
|
||||
_run.log_scalar("recall", recall)
|
||||
_run.log_scalar("f1", f1)
|
||||
|
||||
# If directory models does not exist, create it
|
||||
if not os.path.exists('./models'):
|
||||
os.makedirs('./models')
|
||||
|
||||
# Save the model
|
||||
torch.save(model, './models/model.pth')
|
||||
|
||||
# Add artifact to sacred experiment
|
||||
ex.add_artifact('./models/model.pth', content_type="application/x-pythorch")
|
||||
|
||||
# Save id of the run
|
||||
with open("experiment_id.txt", "w") as f:
|
||||
f.write(str(_run._id))
|
||||
|
||||
# Save sources and resources paths
|
||||
with open("sources.txt", "w") as f:
|
||||
for source in _run.observers[1].run_entry["experiment"]["sources"]:
|
||||
f.write(source[1] + "\n")
|
||||
|
||||
with open("resources.txt", "w") as f:
|
||||
for resource in _run.observers[1].run_entry["resources"]:
|
||||
f.write(resource[1] + "\n")
|
27
models/Jenkinsfile
vendored
27
models/Jenkinsfile
vendored
@ -48,10 +48,29 @@ pipeline {
|
||||
}
|
||||
|
||||
steps {
|
||||
sh "chmod +x ./create_model.py"
|
||||
sh "python3 ./create_model.py ${params.epochs} ${params.learning_rate} ${params.weight_decay}"
|
||||
archiveArtifacts artifacts: 'models/model.pth', onlyIfSuccessful: true
|
||||
build job: 's464863-evaluation/main', wait: false
|
||||
script {
|
||||
sh "chmod +x ./create_model.py"
|
||||
sh "python3 ./create_model.py ${params.epochs} ${params.learning_rate} ${params.weight_decay}"
|
||||
|
||||
def experiment_id = readFile('experiment_id.txt').trim()
|
||||
archiveArtifacts artifacts: "my_runs/${experiment_id}/*", onlyIfSuccessful: true
|
||||
|
||||
archiveArtifacts artifacts: 'models/model.pth', onlyIfSuccessful: true
|
||||
|
||||
def sources = readFile('sources.txt').split('\n')
|
||||
|
||||
for (def source in sources) {
|
||||
archiveArtifacts artifacts: "my_runs/${source}", onlyIfSuccessful: true
|
||||
}
|
||||
|
||||
def resources = readFile('resources.txt').split('\n')
|
||||
|
||||
for (def resource in resources) {
|
||||
archiveArtifacts artifacts: "${resource}", onlyIfSuccessful: true
|
||||
}
|
||||
|
||||
build job: 's464863-evaluation/main', wait: false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
Loading…
Reference in New Issue
Block a user