34 lines
847 B
Python
34 lines
847 B
Python
import torch
|
|
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
from NeuralNetwork import NeuralNetwork
|
|
|
|
|
|
# Load model if it exists
|
|
if os.path.exists('./models/model.pth'):
|
|
# Create model
|
|
model = torch.load('./models/model.pth')
|
|
|
|
# Load test data
|
|
test = pd.read_csv('./datasets/test.csv')
|
|
|
|
# Split data
|
|
X_test = test.drop(columns=['id', 'diagnosis']).values
|
|
y_test = test['diagnosis'].values
|
|
|
|
# Convert data to PyTorch tensors
|
|
X_test = torch.FloatTensor(X_test)
|
|
y_test = torch.FloatTensor(y_test).view(-1, 1)
|
|
|
|
# Predict
|
|
with torch.no_grad():
|
|
y_pred = model(X_test)
|
|
y_pred = np.where(y_pred >= 0.5, 1, 0)
|
|
|
|
# Save predictions to CSV
|
|
pd.DataFrame(y_pred, columns=['Prediction']).to_csv('predictions.csv', index=False)
|
|
else:
|
|
raise FileNotFoundError('Model not found')
|