implemented mockup of the algorithm

This commit is contained in:
Dawid Pylak 2022-06-05 18:52:21 +02:00
parent e66690e37d
commit 2edbb89c99
3 changed files with 136 additions and 0 deletions

View File

@ -26,3 +26,7 @@ class Constants:
CACTUS = 'kaktus'
POTATO = 'ziemniak'
WEATH = 'pszenica'
# Genetic algorithm points average
POINTS_AVERAGE = 20

View File

@ -0,0 +1,52 @@
from Plants import *
from random import choice, random
class GeneticAlgorithm:
def __init__(self):
self.mutation_probability = 0.1
self.stop_condition = stop_condition
def selection_strategy(self, generation: BaseField):
maximum_selected_items = int(len(generation) / 10)
sorted_elements = sorted(generation, key=lambda x: x.evaluation)
return sorted[:maximum_selected_items]
def _generate_random_plants(self):
plant_names = [choice(BaseField.possibilities) for _ in range(9)]
return [plant_selector(plant_name) for plant_name in plant_names]
def _generate_first_population(self):
return [BaseField(self._generate_random_plants()) for _ in range(100)]
def run(self):
for population in self._generate_first_population():
print(population)
first_population = self._generate_first_population()
first_population.sort(key=lambda x: x.evaluation)
population_length = len(first_population)
i = 0
while True:
selected = self.selection_strategy(first_population)
new_population = selected.copy()
while len(new_population) != population_length:
child = choice(first_population).crossover(choice(first_population))
if random() <= self.mutation_probability:
child.mutate()
new_population.append(child)
first_population = new_population
best_match = min(first_population, key=lambda x: x.evaluation)
i += 1
if self.stop_condition(best_match):
break
def main():
GeneticAlgorithm().run()
if __name__ == '__main__':
main()

80
src/utils/Plants.py Normal file
View File

@ -0,0 +1,80 @@
from constants import Constants
from random import randint, choice
class BasePlant:
def __init__(self):
self.appearance_points = 0
self.difficulty_points = 0
self.profit_points = 0
def first_population_generator(self):
pass
def __int__(self):
return sum([self.appearance_points, self.difficulty_points, self.profit_points])
def __float__(self):
return self.__int__()
def stop_condition(average):
return average == Constants.POINTS_AVERAGE
def plant_selector(plant_name: str) -> BasePlant:
if plant_name == Constants.POTATO:
return Potato()
elif plant_name == Constants.WEATH:
return Weath()
elif plant_name == Constants.CACTUS:
return Cactus()
class BaseField:
"""Class that represents what plants grow on a certain field divided into 9 tiles"""
possibilities = [Constants.WEATH, Constants.POTATO, Constants.CACTUS]
def __init__(self, plants):
self.plants: list(BasePlant) = plants
self.evaluation = self.evaluate_function()
def mutate(self):
self._perform_mutation()
self.evaluation = self.evaluate_function()
def _perform_mutation(self):
random_index = randint(0, 8)
self.plants[random_index] = plant_selector(choice(self.possibilities))
def crossover(self, other_field):
length = int(randint(0, 8))
new_plants = self.plants[:length] + other_field.plants[length:]
return BaseField(new_plants)
def evaluate_function(self):
current_fields_average = sum([int(plant) for plant in self.plants]) / 9
return Constants.POINTS_AVERAGE - current_fields_average
def __str__(self):
return ''.join([str(plant) + ' ' for plant in self.plants])
class Potato(BasePlant):
def __str__(self):
return Constants.POTATO
class Cactus(BasePlant):
def __str__(self):
return Constants.CACTUS
class Weath(BasePlant):
def __str__(self):
return Constants.WEATH