Implement working A* algorithm without tile cost
This commit is contained in:
parent
1d45722aa5
commit
81398cb15b
50
main.py
50
main.py
@ -3,28 +3,27 @@ import pygame
|
||||
from src.world import World
|
||||
from src.tractor import Tractor
|
||||
from src.settings import Settings
|
||||
from src.utils.bfs import BFSSearcher
|
||||
from src.constants import Constants
|
||||
from utils.astar import a_star
|
||||
import numpy as np
|
||||
from utils.astar import a_star_search
|
||||
|
||||
|
||||
def main():
|
||||
pygame.init()
|
||||
|
||||
settings = Settings()
|
||||
world = World(settings)
|
||||
tractor = Tractor("Spalinowy", "Nawóz 1", settings, 8 * settings.tile_size, 8 * settings.tile_size)
|
||||
obstacles = [tile for tile in world.tiles if tile.type == 'rock']
|
||||
settings = Settings() # ustawienia pygame
|
||||
world = World(settings) # stworzenie mapy na bazie ustawień pygame
|
||||
tractor = Tractor("Spalinowy", "Nawóz 1", settings, 8 * settings.tile_size, 8 * settings.tile_size) # stworzenie traktora z podanymi argumentami
|
||||
obstacles = [tile for tile in world.tiles if tile.type == 'rock'] # stworzenie listy z przeszkodami, kamień = przeszkoda
|
||||
clock = pygame.time.Clock() # FPS purpose
|
||||
|
||||
screen = pygame.display.set_mode((settings.screen_width, settings.screen_height))
|
||||
pygame.display.set_caption('TRAKTOHOLIK')
|
||||
screen = pygame.display.set_mode((settings.screen_width, settings.screen_height)) # tworzenie ekranu
|
||||
pygame.display.set_caption('TRAKTOHOLIK') # nazwa okna
|
||||
|
||||
start_cords = (8, 1)
|
||||
goals = [(3, 3), (7, 7), (0, 0)]
|
||||
end_cords = goals[0]
|
||||
start_dir = tractor.curr_direction
|
||||
# path = BFSSearcher().search(start_cords, end_cords, start_dir)
|
||||
start_dir = tractor.curr_direction # przypisanie początkowego ustawienia traktora do zmiennej
|
||||
# path = BFSSearcher().search(start_cords, end_cords, start_dir) # wygenerowanie listy ruchów na bazie BFS
|
||||
path = a_star_search(start_cords, end_cords, start_dir) # generowanie ścieżki za pomocą A*
|
||||
|
||||
run = True
|
||||
while run:
|
||||
@ -37,22 +36,17 @@ def main():
|
||||
if event.type == pygame.QUIT:
|
||||
run = False
|
||||
|
||||
|
||||
# if path:
|
||||
# action = path.pop(0)
|
||||
# tractor.update(action)
|
||||
# else:
|
||||
# if len(goals) > 1:
|
||||
# start_cord = goals.pop(0)
|
||||
# end_cords = goals[0]
|
||||
# start_dir = tractor.curr_direction
|
||||
# path = BFSSearcher().search(start_cord, end_cords, start_dir)
|
||||
|
||||
while goals:
|
||||
goal = goals.pop(0)
|
||||
path = a_star(world, start_cords, goal)
|
||||
start_cords = goal
|
||||
print(path)
|
||||
# iteracja przez listę ruchów
|
||||
if path:
|
||||
action = path.pop(0) # pobranie pierwszego ruchu z listy
|
||||
tractor.update(action) # wykonanie ruchu przez traktor
|
||||
else:
|
||||
if len(goals) > 1: # sprawdzenie czy są inne cele
|
||||
new_start = goals.pop(0) # pobierz współrzędne pierwszego celu i ustaw jako początkowe
|
||||
end_cords = goals[0] # ustaw kolejny cel
|
||||
start_dir = tractor.curr_direction # aktualizacja kierunku traktora
|
||||
# path = BFSSearcher().search(start_cord, end_cords, start_dir) # generacja nowej ścieżki
|
||||
path = a_star_search(new_start, end_cords, start_dir)
|
||||
|
||||
pygame.time.wait(settings.freeze_time)
|
||||
pygame.display.update()
|
||||
|
@ -1,107 +1,140 @@
|
||||
import world
|
||||
from operator import itemgetter
|
||||
import copy
|
||||
import tractor
|
||||
|
||||
import world
|
||||
from constants import Constants as C
|
||||
|
||||
|
||||
# noinspection DuplicatedCode
|
||||
class Node:
|
||||
def __init__(self, x, y): # inicjalizacja węzła
|
||||
def __init__(self, x, y, agent_direction, action=None, parent=None): # inicjalizacja węzła
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.neighbours = []
|
||||
self.parent = None
|
||||
self.g_cost = 0
|
||||
self.f_cost = 0
|
||||
self.h_cost = 0
|
||||
self.state = tuple([self.x, self.y])
|
||||
self.agent_direction = agent_direction
|
||||
self.parent = parent
|
||||
self.action = action
|
||||
|
||||
def create_neighbours(self, field: world): # tworzenie sąsiadów i sprawdzanie czy nie wykraczają poza macierz i czy nie są przeszkodą
|
||||
if self.x - 1 >= 0 and field.world_data[self.x - 1][self.y] != 0:
|
||||
self.neighbours.append([self.x - 1, self.y])
|
||||
def get_parent(self):
|
||||
return self.parent
|
||||
|
||||
if self.x + 1 < len(field.world_data) and field.world_data[self.x + 1][self.y] != 0:
|
||||
self.neighbours.append([self.x + 1, self.y])
|
||||
def get_direction(self):
|
||||
return self.agent_direction
|
||||
|
||||
if self.y + 1 < len(field.world_data[0]) and field.world_data[self.x][self.y + 1] != 0:
|
||||
self.neighbours.append([self.x, self.y + 1])
|
||||
def get_x(self):
|
||||
return self.x
|
||||
|
||||
if self.y - 1 >= 0 and field.world_data[self.x][self.y - 1] != 0:
|
||||
self.neighbours.append([self.x, self.y - 1])
|
||||
def get_y(self):
|
||||
return self.y
|
||||
|
||||
def calculate_h_cost(self, goal):
|
||||
self.h_cost = abs(self.x - goal.x) + abs(self.y - goal.y)
|
||||
def get_action(self):
|
||||
return self.action
|
||||
|
||||
def __repr__(self):
|
||||
return " <Node x:%s y:%s state:%s agent_dir:%s parent:%s action:%s> " % (
|
||||
self.x, self.y, self.state, self.agent_direction, self.parent, self.action)
|
||||
|
||||
def successor(self):
|
||||
action_list = []
|
||||
x = self.x
|
||||
y = self.y
|
||||
|
||||
# vector rotation: https://stackoverflow.com/questions/4780119/2d-euclidean-vector-rotations
|
||||
temp_direction = self.agent_direction
|
||||
temp_direction = [-temp_direction[1], temp_direction[0]]
|
||||
action_list.append((C.ROTATE_LEFT, ((x, y), temp_direction)))
|
||||
|
||||
temp_direction = self.agent_direction
|
||||
temp_direction = [temp_direction[1], -temp_direction[0]]
|
||||
action_list.append((C.ROTATE_RIGHT, ((x, y), temp_direction)))
|
||||
|
||||
if self.agent_direction == C.RIGHT and x < 9:
|
||||
action_list.append((C.MOVE, ((x + 1, y), self.agent_direction)))
|
||||
elif self.agent_direction == C.LEFT and x > 0:
|
||||
action_list.append((C.MOVE, ((x - 1, y), self.agent_direction)))
|
||||
elif self.agent_direction == C.UP and y < 9:
|
||||
action_list.append((C.MOVE, ((x, y + 1), self.agent_direction)))
|
||||
elif self.agent_direction == C.DOWN and y > 0:
|
||||
action_list.append((C.MOVE, ((x, y - 1), self.agent_direction)))
|
||||
|
||||
return action_list
|
||||
|
||||
|
||||
def a_star(field: world, start, goal): # algorytm zwraca ścieżkę którą ma przebyć agent
|
||||
def h_cost(goal: tuple, node: Node): # oblicznie heurystyki
|
||||
return abs(node.x - goal[0]) + abs(node.y - goal[1])
|
||||
|
||||
# tworzenie dictionary składającego się z nodeów
|
||||
node_dict = {}
|
||||
|
||||
for i in range(len(field.world_data)):
|
||||
for j in range(len(field.world_data[0])):
|
||||
node_dict[i, j] = Node(i, j)
|
||||
def g_cost(node: Node): # funkcja kosztu : ile kosztuje przejechanie przez dane pole
|
||||
cost = 0
|
||||
while node.get_parent() is not None:
|
||||
cost += 10
|
||||
node = node.get_parent()
|
||||
return cost
|
||||
|
||||
# przypisanie startu i celu do zmiennej
|
||||
start = node_dict[start[0], start[1]]
|
||||
goal = node_dict[goal[0], goal[1]]
|
||||
|
||||
# inicjalizacja listy open i closed
|
||||
open_list = []
|
||||
closed_list = []
|
||||
def f_cost(goal: tuple, node: Node): # funkcja zwracająca sumę funkcji kosztu oraz heurestyki
|
||||
return g_cost(node) + h_cost(goal, node)
|
||||
|
||||
# dodanie do listy punktu startowego
|
||||
open_list.append(start)
|
||||
|
||||
while open_list:
|
||||
# sortowanie listy open rosnąco
|
||||
open_list.sort(key=lambda o: o.f_cost)
|
||||
def print_moves(node: Node): # zwraca listę ruchów jakie należy wykonać by dotrzeć do punktu docelowego
|
||||
moves_list = []
|
||||
while node.parent is not None:
|
||||
moves_list.append(node.action)
|
||||
node = node.parent
|
||||
return moves_list[::-1]
|
||||
|
||||
# pobranie z listy open elementu o najniższym koszcie
|
||||
current = open_list.pop(0)
|
||||
|
||||
# dodanie do listy closed pobranego elementu
|
||||
closed_list.append(current)
|
||||
def is_goal_reached(element: Node, goal: tuple):
|
||||
return (element.x, element.y) == goal
|
||||
|
||||
# stworzenie listy z możliwymi opcjami
|
||||
current.create_neighbours(field)
|
||||
|
||||
# sprawdzenie celu
|
||||
if current == goal:
|
||||
def a_star_search(state: tuple, goal: tuple, agent_direction: list):
|
||||
fringe = []
|
||||
explored = []
|
||||
|
||||
starting_node = Node(state[0], state[1], agent_direction, None, None)
|
||||
|
||||
fringe.append((starting_node, 0))
|
||||
|
||||
while fringe:
|
||||
|
||||
element = fringe.pop(0)
|
||||
|
||||
if is_goal_reached(element[0], goal):
|
||||
return print_moves(element[0])
|
||||
|
||||
explored.append(element)
|
||||
|
||||
for (action, elem_state) in element[0].successor():
|
||||
|
||||
fringe_tuple = []
|
||||
fringe_tuple_prio = []
|
||||
explored_tuple = []
|
||||
|
||||
for (node, cost) in fringe:
|
||||
fringe_tuple.append(((node.get_x(), node.get_y()), node.get_direction()))
|
||||
|
||||
fringe_tuple_prio.append((((node.get_x(), node.get_y()), node.get_direction()), cost))
|
||||
|
||||
for (node, cost) in explored:
|
||||
explored_tuple.append(((node.get_x(), node.get_y()), node.get_direction()))
|
||||
|
||||
new_node = Node(elem_state[0][0], elem_state[0][1], elem_state[1], action, element[0])
|
||||
p = f_cost(goal, new_node)
|
||||
|
||||
if elem_state not in fringe_tuple and elem_state not in explored_tuple:
|
||||
fringe.append((new_node, p))
|
||||
fringe = sorted(fringe, key=itemgetter(1))
|
||||
# print("fringe_loop_if: ", fringe)
|
||||
elif elem_state in fringe_tuple:
|
||||
i = 0
|
||||
for (state_prio, r) in fringe_tuple_prio:
|
||||
if str(state_prio) == str(elem_state):
|
||||
if r > p:
|
||||
fringe.insert(i, (new_node, p))
|
||||
fringe.pop(i + 1)
|
||||
fringe = sorted(fringe, key=itemgetter(1))
|
||||
# print("fringe_loop_elif: ", fringe)
|
||||
break
|
||||
|
||||
# iteracja przez sąsiadów
|
||||
for next in current.neighbours:
|
||||
if node_dict[next[0], next[1]] in closed_list:
|
||||
continue
|
||||
|
||||
if node_dict[next[0], next[1]] in open_list:
|
||||
new_g_cost = current.g_cost + 1
|
||||
if node_dict[next[0], next[1]].g_cost > new_g_cost:
|
||||
node_dict[next[0], next[1]].g_cost = new_g_cost
|
||||
node_dict[next[0], next[1]].parent = node_dict[current.x, current.y]
|
||||
|
||||
else:
|
||||
node_dict[next[0], next[1]].g_cost = node_dict[current.x, current.y].g_cost + 1
|
||||
node_dict[next[0], next[1]].calculate_h_cost(goal)
|
||||
node_dict[next[0], next[1]].parent = node_dict[current.x, current.y]
|
||||
open_list.append(node_dict[next[0], next[1]])
|
||||
|
||||
# inicjalizacja listy ze ścieżką
|
||||
path = []
|
||||
while current.parent:
|
||||
path.append([current.x, current.y])
|
||||
current = current.parent
|
||||
|
||||
# dodanie punktu początkowego oraz odwrócenie i zwrócenie listy
|
||||
path.append([start.x, start.y])
|
||||
path.reverse()
|
||||
|
||||
return path
|
||||
|
||||
|
||||
# def path_to_action(path: list): # funkcja zmieniająca ścieżkę nodeów na instrukcję dla agenta
|
||||
# vector_list = []
|
||||
# action_list = []
|
||||
#
|
||||
# # tmp_direction = agent_direction
|
||||
# # iteracja przez wszystkie pary elementów żeby obliczyć wektory ruchu
|
||||
# for i in range(len(path) - 1):
|
||||
# tmp_vector = [(path[i+1][0] - path[i][0]), (path[i+1][1] - path[i][1])]
|
||||
# vector_list.append(tmp_vector)
|
||||
#
|
||||
# return vector_list
|
||||
i += 1
|
||||
|
Loading…
Reference in New Issue
Block a user