GRK_Project/cw 9/shaders/shader_water.frag

264 lines
7.4 KiB
GLSL
Raw Normal View History

2023-02-08 18:04:30 +01:00
#version 430 core
2023-01-30 14:45:13 +01:00
in vec3 pos;
in vec3 interpolatedNormal;
in vec2 st;
uniform float time;
uniform sampler2D tex;
uniform mat4 rotMat;
uniform vec3 lightPos;
uniform vec3 eyePosition;
//vec3 lightPos = vec3(0.0, 4.0, 2.0);
vec3 LightColor = vec3(0.9,0.9,0.9);
float LightPower = 1.0;
//out vec4 finalcolor;
out vec4 color;
// Authors : Ian McEwan, Ashima Arts and Stefan Gustavson, LiU.
// noise functions
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
// 3-D simplex noise
//
float snoise(vec3 v)
{
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}
// 3-D simplex noise with gradient
// (analytical partial derivatives in x,y,z)
//
float snoise(vec3 v, out vec3 gradient)
{
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
vec4 m2 = m * m;
vec4 m4 = m2 * m2;
vec4 pdotx = vec4(dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3));
// Determine noise gradient
vec4 temp = m2 * m * pdotx;
gradient = -8.0 * (temp.x * x0 + temp.y * x1 + temp.z * x2 + temp.w * x3);
gradient += m4.x * p0 + m4.y * p1 + m4.z * p2 + m4.w * p3;
gradient *= 42.0;
return 42.0 * dot(m4, pdotx);
}
// main
void main () {
//vec4 light = vec4(1.0, 10.0, 0.0, 0.1);
vec4 light = vec4(lightPos, 1);
//light = light*rotMat;
vec3 colorBlue = vec3(0.0,0.1,0.3);
vec3 colorLightBlue = vec3(0.0, 0.04, 0.2);
vec3 colorWhite = vec3(0.9, 0.9, 0.9);
// Bump map surface
vec3 grad = vec3(0.0); // To store gradient of noise
vec3 gradtemp = vec3(0.0); // Temporary gradient for fractal sum
float bump = 0.2 * snoise(2*pos, grad) + 0.5;
grad *= 0.4; // Scale gradient with inner derivative
bump += 0.5 * snoise(pos*4.0, gradtemp);
grad += 2.0 * gradtemp; // Same influence (double freq, half amp)
bump += 0.25 * snoise(pos*10.0, gradtemp);
grad += 4.0 * gradtemp; // Same influence (double freq, half amp)
// Perturb normal
vec3 perturbation = grad - dot(grad, interpolatedNormal) * interpolatedNormal;
vec3 norm = interpolatedNormal - 0.2 * perturbation;
vec3 ballPos = vec3(0.0, 0.0, -0.1);
ballPos += vec3(0.0, sin(ballPos.z - 2.0*time)/15.0 + cos(ballPos.x + time)/25, 0.0);
vec3 shadow = vec3(0.0,0.0,0.0);
// fake shadow
if( length(pos.xyz-ballPos) < 0.1)
LightPower = 0.1;
// Material properties
vec3 MaterialDiffuseColor = mix(colorBlue, colorLightBlue, 0.5);
vec3 MaterialAmbientColor = vec3(0.3,0.3,0.3) * MaterialDiffuseColor;
vec3 MaterialSpecularColor = vec3(0.9,0.9,0.9);
// Distance to the light
float distance = length(vec3(light) - pos);
// Normal of the computed fragment, in camera space
vec3 n = normalize(norm);
// Direction of the light (from the fragment to the light)
vec3 l = normalize(vec3(light)-pos);
// Cosine of the angle between the normal and the light direction,
float cosTheta = clamp( dot( n,l ), 0,1 );
// Eye vector (towards the camera)
vec3 E = normalize(eyePosition - pos);
// Direction in which the triangle reflects the light
vec3 R = -reflect(l,n);
// Cosine of the angle between the Eye vector and the Reflect vector,
float cosAlpha = clamp( dot( E,R ), 0,1 );
color = vec4(pow(vec3(MaterialAmbientColor
+ MaterialDiffuseColor * LightColor * LightPower * pow(cosTheta,2) / (distance*0.1)
+ MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,100.0) / (distance*0.1) ), vec3(1.0/2.2)), 0.5);
}