#version 330 core in vec3 pos; in vec3 interpolatedNormal; in vec2 st; uniform float time; uniform sampler2D tex; uniform mat4 rotMat; uniform vec3 lightPos; uniform vec3 eyePosition; //vec3 lightPos = vec3(0.0, 4.0, 2.0); vec3 LightColor = vec3(0.9,0.9,0.9); float LightPower = 1.0; //out vec4 finalcolor; out vec4 color; // Authors : Ian McEwan, Ashima Arts and Stefan Gustavson, LiU. // noise functions vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } // 3-D simplex noise // float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } // 3-D simplex noise with gradient // (analytical partial derivatives in x,y,z) // float snoise(vec3 v, out vec3 gradient) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); vec4 m2 = m * m; vec4 m4 = m2 * m2; vec4 pdotx = vec4(dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3)); // Determine noise gradient vec4 temp = m2 * m * pdotx; gradient = -8.0 * (temp.x * x0 + temp.y * x1 + temp.z * x2 + temp.w * x3); gradient += m4.x * p0 + m4.y * p1 + m4.z * p2 + m4.w * p3; gradient *= 42.0; return 42.0 * dot(m4, pdotx); } // main void main () { //vec4 light = vec4(1.0, 10.0, 0.0, 0.1); vec4 light = vec4(lightPos, 1); //light = light*rotMat; vec3 colorBlue = vec3(0.0,0.1,0.2); vec3 colorLightBlue = vec3(0.0, 0.04, 0.2); vec3 colorWhite = vec3(0.9, 0.9, 0.9); // Bump map surface vec3 grad = vec3(0.0); // To store gradient of noise vec3 gradtemp = vec3(0.0); // Temporary gradient for fractal sum float bump = 0.2 * snoise(2*pos, grad) + 0.5; grad *= 0.4; // Scale gradient with inner derivative bump += 0.5 * snoise(pos*4.0, gradtemp); grad += 2.0 * gradtemp; // Same influence (double freq, half amp) bump += 0.25 * snoise(pos*10.0, gradtemp); grad += 4.0 * gradtemp; // Same influence (double freq, half amp) // Perturb normal vec3 perturbation = grad - dot(grad, interpolatedNormal) * interpolatedNormal; vec3 norm = interpolatedNormal - 0.2 * perturbation; vec3 ballPos = vec3(0.0, 0.0, -0.1); ballPos += vec3(0.0, sin(ballPos.z - 2.0*time)/15.0 + cos(ballPos.x + time)/25, 0.0); vec3 shadow = vec3(0.0,0.0,0.0); // fake shadow if( length(pos.xyz-ballPos) < 0.1) LightPower = 0.1; // Material properties vec3 MaterialDiffuseColor = mix(colorBlue, colorLightBlue, 0.5); vec3 MaterialAmbientColor = vec3(0.3,0.3,0.3) * MaterialDiffuseColor; vec3 MaterialSpecularColor = vec3(0.9,0.9,0.9); // Distance to the light float distance = length(vec3(light) - pos); // Normal of the computed fragment, in camera space vec3 n = normalize(norm); // Direction of the light (from the fragment to the light) vec3 l = normalize(vec3(light)-pos); // Cosine of the angle between the normal and the light direction, float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(eyePosition - pos); // Direction in which the triangle reflects the light vec3 R = -reflect(l,n); // Cosine of the angle between the Eye vector and the Reflect vector, float cosAlpha = clamp( dot( E,R ), 0,1 ); color = vec4(pow(vec3(MaterialAmbientColor + MaterialDiffuseColor * LightColor * LightPower * pow(cosTheta,2) / (distance*0.1) + MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,100.0) / (distance*0.1) ), vec3(1.0/2.2)), 0.5); }