Zaktualizuj 'neural_network.py'
poprawka sieci neuronowych
This commit is contained in:
parent
c959093e38
commit
32179be076
@ -3,44 +3,41 @@ import cv2
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
import random
|
||||||
|
|
||||||
|
mnist = tf.keras.datasets.mnist
|
||||||
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
|
||||||
|
x_train = tf.keras.utils.normalize(x_train, axis=1)
|
||||||
|
x_test = tf.keras.utils.normalize(x_test, axis=1)
|
||||||
|
|
||||||
|
model = tf.keras.models.Sequential()
|
||||||
|
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
|
||||||
|
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
||||||
|
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
||||||
|
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
||||||
|
|
||||||
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
||||||
|
|
||||||
|
model.fit(x_train, y_train, epochs=3)
|
||||||
|
model.save('handwritten.model')
|
||||||
|
|
||||||
|
model = tf.keras.models.load_model('handwritten.model')
|
||||||
|
|
||||||
def recognition():
|
def recognition():
|
||||||
mnist = tf.keras.datasets.mnist
|
image_number = random.randint(1, 9)
|
||||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
try:
|
||||||
|
img = cv2.imread(f"digits/digit{image_number}.png")[:,:,0]
|
||||||
x_train = tf.keras.utils.normalize(x_train, axis=1)
|
img = np.invert(np.array([img]))
|
||||||
x_test = tf.keras.utils.normalize(x_test, axis=1)
|
prediction = model.predict(img)
|
||||||
|
print(f"This digit is probably a {np.argmax(prediction)}")
|
||||||
model = tf.keras.models.Sequential()
|
plt.imshow(img[0], cmap = plt.cm.binary)
|
||||||
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
|
plt.show()
|
||||||
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
except:
|
||||||
model.add(tf.keras.layers.Dense(128, activation='relu'))
|
print("Error!")
|
||||||
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
|
||||||
|
|
||||||
model.compile(optimizer ='adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy'])
|
|
||||||
|
|
||||||
model.fit(x_train, y_train, epochs = 3)
|
|
||||||
model.save('handwritten.model')
|
|
||||||
|
|
||||||
model = tf.keras.models.load_model('handwritten.model')
|
|
||||||
|
|
||||||
image_number = 1
|
|
||||||
while os.path.isfile(f"digits/digit{image_number}.png"):
|
|
||||||
try:
|
|
||||||
img = cv2.imread(f"digits/digit{image_number}.png")[:,:,0]
|
|
||||||
img = np.invert(np.array([img]))
|
|
||||||
prediction = model.predict(img)
|
|
||||||
print(f"This digit is probably a {np.argmax(prediction)}")
|
|
||||||
plt.imshow(img[0], cmap = plt.cm.binary)
|
|
||||||
plt.show()
|
|
||||||
except:
|
|
||||||
print("Error!")
|
|
||||||
finally:
|
|
||||||
image_number +=1
|
|
||||||
|
|
||||||
loss, accuracy = model.evaluate(x_test, y_test)
|
loss, accuracy = model.evaluate(x_test, y_test)
|
||||||
|
|
||||||
print(loss)
|
print(loss)
|
||||||
print(accuracy)
|
print(accuracy)
|
||||||
|
|
||||||
recognition()
|
recognition()
|
Loading…
Reference in New Issue
Block a user