sport-text-classification-ball/mian.py

91 lines
2.2 KiB
Python
Raw Normal View History

2024-05-17 21:36:24 +02:00
import csv
import nltk
import pandas as pd
from sklearn.neural_network import MLPClassifier
from nltk.tokenize import word_tokenize
from gensim.models import Word2Vec
nltk.download('punkt')
# w pliku train.tsv w kolumnach 25706, 58881, 73761 trzeba zamienic w tekscie tabulator na 4 spacje
train = pd.read_csv('train/train.tsv', sep='\t')
train.columns = ["y", "x"]
print(train["y"][0], train["x"][0])
# https://www.geeksforgeeks.org/python-word-embedding-using-word2vec/
slowa = []
for tekst in train["x"]:
pom = []
for slowo in word_tokenize(tekst):
pom.append(slowo.lower())
slowa.append(pom)
print(slowa[0])
# https://radimrehurek.com/gensim/models/word2vec.html
model = Word2Vec(sentences=slowa, vector_size=100, window=5, min_count=1, workers=4)
model.save("word2vec.model")
wektor = model.wv['przyjmujący']
print(wektor)
podobne = model.wv.most_similar('przyjmujący', topn=5)
print(podobne)
teksty = []
for tekst in train["x"]:
pom = None
for slowo in word_tokenize(tekst):
wektor = model.wv[slowo.lower()]
if pom is None:
pom = wektor
else:
pom = pom + wektor
teksty.append(wektor)
print(teksty[0])
X = teksty
y = train["y"]
clf = MLPClassifier() # activation="tanh"
clf.fit(X, y)
# w pliku in.tsv w kolumnach 1983, 5199 trzeba zamienic w tekscie tabulator na 4 spacje
test = pd.read_csv('test-A/in.tsv', sep='\t')
test.columns = ["x"]
print(test["x"][0])
# https://www.geeksforgeeks.org/python-word-embedding-using-word2vec/
slowa = []
for tekst in test["x"]:
pom = []
for slowo in word_tokenize(tekst):
pom.append(slowo.lower())
slowa.append(pom)
print(slowa[0])
teksty = []
for tekst in test["x"]:
pom = None
for slowo in word_tokenize(tekst):
wektor = None
try:
wektor = model.wv[slowo.lower()]
except KeyError:
pass
if wektor is not None:
if pom is None:
pom = wektor
else:
pom = pom + wektor
teksty.append(wektor)
print(teksty[0])
przewidywania = clf.predict(teksty)
print(przewidywania)
with open("test-A/out.tsv", "w", encoding="utf-8") as uwu:
for p in przewidywania:
uwu.write(str(p)+"\n")