2022-05-30 13:11:25 +02:00
|
|
|
import pandas as pd
|
|
|
|
import tensorflow as tf
|
|
|
|
import numpy as np
|
|
|
|
import warnings
|
|
|
|
import os
|
|
|
|
from keras.utils import load_img
|
|
|
|
import keras
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from keras.preprocessing.image import ImageDataGenerator
|
|
|
|
from keras import Sequential
|
|
|
|
from keras.layers import Conv2D, MaxPool2D, Flatten, Dense
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
|
|
create_model = False
|
|
|
|
learning_sets_path = "data/learning_sets"
|
2022-06-08 18:17:47 +02:00
|
|
|
save_model_path = "data/models/true_mine_recognizer2.h5"
|
|
|
|
load_model_path = "data/models/true_mine_recognizer2.h5"
|
2022-05-30 13:11:25 +02:00
|
|
|
image_size = 128
|
|
|
|
|
|
|
|
class NeuralNetwork():
|
|
|
|
def __init__(self):
|
|
|
|
if create_model:
|
|
|
|
input_path = []
|
|
|
|
label = []
|
|
|
|
|
|
|
|
for class_name in os.listdir(learning_sets_path):
|
|
|
|
for path in os.listdir(learning_sets_path+ "/" +class_name):
|
|
|
|
if class_name == 'mine':
|
|
|
|
label.append(0)
|
|
|
|
else:
|
|
|
|
label.append(1)
|
|
|
|
input_path.append(os.path.join(learning_sets_path, class_name, path))
|
|
|
|
print(input_path[0], label[0])
|
|
|
|
df = pd.DataFrame()
|
|
|
|
df['images'] = input_path
|
|
|
|
df['label'] = label
|
|
|
|
df = df.sample(frac=1).reset_index(drop=True)
|
|
|
|
df.head()
|
|
|
|
df['label'] = df['label'].astype('str')
|
|
|
|
df.head()
|
|
|
|
|
|
|
|
train, test = train_test_split(df, test_size=0.2, random_state=42)
|
|
|
|
|
|
|
|
|
|
|
|
train_generator = ImageDataGenerator(
|
|
|
|
rescale = 1./255,
|
|
|
|
rotation_range = 40,
|
|
|
|
shear_range = 0.2,
|
|
|
|
zoom_range = 0.2,
|
|
|
|
horizontal_flip = True,
|
|
|
|
fill_mode = 'nearest'
|
|
|
|
)
|
|
|
|
|
|
|
|
val_generator = ImageDataGenerator(rescale = 1./255)
|
|
|
|
|
|
|
|
train_iterator = train_generator.flow_from_dataframe(
|
|
|
|
train,
|
|
|
|
x_col='images',
|
|
|
|
y_col='label',
|
|
|
|
target_size=(image_size,image_size),
|
|
|
|
batch_size=512,
|
|
|
|
class_mode='binary'
|
|
|
|
)
|
|
|
|
|
|
|
|
val_iterator = val_generator.flow_from_dataframe(
|
|
|
|
test,
|
|
|
|
x_col='images',
|
|
|
|
y_col='label',
|
|
|
|
target_size=(image_size,image_size),
|
|
|
|
batch_size=512,
|
|
|
|
class_mode='binary'
|
|
|
|
)
|
|
|
|
|
|
|
|
self.model = Sequential([
|
|
|
|
Conv2D(16, (3,3), activation='relu', input_shape=(image_size,image_size,3)),
|
|
|
|
MaxPool2D((2,2)),
|
|
|
|
Conv2D(32, (3,3), activation='relu'),
|
|
|
|
MaxPool2D((2,2)),
|
|
|
|
Conv2D(64, (3,3), activation='relu'),
|
|
|
|
MaxPool2D((2,2)),
|
|
|
|
Flatten(),
|
|
|
|
Dense(512, activation='relu'),
|
|
|
|
Dense(1, activation='sigmoid')
|
|
|
|
])
|
|
|
|
self.model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
|
|
|
self.model.summary()
|
|
|
|
self.model.fit(train_iterator, epochs=10, validation_data=val_iterator)
|
|
|
|
self.model.save(save_model_path)
|
|
|
|
else:
|
|
|
|
self.model = keras.models.load_model(load_model_path,
|
|
|
|
compile=True
|
|
|
|
)
|
|
|
|
def recognize(self, image_path):
|
|
|
|
image = keras.utils.load_img(image_path, target_size=(image_size, image_size))
|
|
|
|
image_array = keras.utils.img_to_array(image)
|
|
|
|
image_array = keras.backend.expand_dims(image_array, 0)
|
|
|
|
|
|
|
|
prediction = self.model.predict(image_array)
|
|
|
|
if prediction[0] > 0.5:
|
|
|
|
predict = "notmine"
|
|
|
|
elif prediction[0] <= 0.5:
|
|
|
|
predict = "mine"
|
|
|
|
|
2022-05-30 18:55:07 +02:00
|
|
|
print("Image: ",image_path," is classified as: ", predict)
|
2022-05-30 13:11:25 +02:00
|
|
|
if predict == "mine":
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
return False
|