gonito/Handler/Graph.hs

335 lines
14 KiB
Haskell

module Handler.Graph where
import Import
import Handler.Tables
import Handler.Dashboard (indicatorToEntry, prettyIndicatorEntry, formatTarget, IndicatorEntry(..), TargetStatus(..), filterEntries, getTargetStatus)
import Handler.Shared (formatParameter, formatScore, fetchMainTest, compareFun)
import Data.Maybe
import Data.List ((!!))
import Database.Persist.Sql
import GEval.Core (getMetricOrdering)
import GEval.EvaluationScheme
import GEval.Common (MetricValue)
import qualified Data.Map as M
import qualified Data.Text as T
import Data.Aeson (KeyValue)
import Data.SubmissionConditions (parseCondition, checkCondition, VariantEntry(..))
-- graphs for parameters
getChallengeGraphDataR :: Text -> Handler Value
getChallengeGraphDataR challengeName = submissionsToJSON (\_ -> True) challengeName
data ParamGraphItem = ParamGraphItem TableEntry Text Text MetricValue
data ParamGraphSeries = ParamGraphSeries Text [(TableEntry, Text, MetricValue)]
getChallengeParamGraphDataR :: Text -> (Key Test) -> Text -> Handler Value
getChallengeParamGraphDataR challengeName testId paramName = do
(Entity challengeId _) <- runDB $ getBy404 $ UniqueName challengeName
test <- runDB $ get404 testId
let testRef = getTestReference (Entity testId test)
(entries, _) <- runDB $ getChallengeSubmissionInfos 1 (const True) (const True) id challengeId
let values = map (findParamValue paramName) entries
let items = Data.Maybe.catMaybes $ map (toParamGraphItem testRef paramName) $ zip entries values
let series = map (\(label, rs) -> ParamGraphSeries label rs)
$ organizeBy
$ map (\(ParamGraphItem entry label x y) -> (label, (entry, x, y))) items
return $ object [
"xs" .= object (map (\(ParamGraphSeries seriesName _) -> (seriesName .= (xSeriesName seriesName))) series),
"columns" .= ((map (toYColumn $ testPrecision test) series) ++ (map toXColumn series))
]
toYColumn :: Maybe Int -> ParamGraphSeries -> [Text]
toYColumn mPrecision (ParamGraphSeries seriesName items) =
seriesName : (map (\(_,_,v) -> formatScore mPrecision v) items)
toXColumn :: ParamGraphSeries -> [Text]
toXColumn (ParamGraphSeries seriesName items) =
(xSeriesName seriesName) : (map (\(_,x,_) -> x) items)
xSeriesName :: Text -> Text
xSeriesName = (++ "_x")
organizeBy :: (Eq a, Ord a) => [(a, b)] -> [(a, [b])]
organizeBy pList = M.toList $ M.fromListWith (++) $ map (\(x, y) -> (x, [y])) pList
toParamGraphItem :: TestReference -> Text -> (TableEntry, Maybe Text) -> Maybe ParamGraphItem
toParamGraphItem _ _ (_, Nothing) = Nothing
toParamGraphItem testRef paramName (entry, Just val) = (ParamGraphItem entry label val) <$> join y
where label = unwords (tagsFormatted ++ paramsFormatted)
tagsFormatted =
map (tagName . entityVal . fst)
$ tableEntryTagsInfo entry
paramsFormatted =
map formatParameter
$ filter (\pe -> parameterName pe /= paramName)
$ map entityVal $ tableEntryParams entry
y = evaluationScore <$> lookup testRef (tableEntryMapping entry)
findParamValue :: Text -> TableEntry -> Maybe Text
findParamValue paramName entry =
(parameterValue . entityVal) <$> (find (\e -> parameterName (entityVal e) == paramName) $ tableEntryParams entry)
submissionsToJSON :: ((Entity Submission) -> Bool) -> Text -> Handler Value
submissionsToJSON condition challengeName = do
(Entity challengeId _) <- runDB $ getBy404 $ UniqueName challengeName
(entries, _) <- getLeaderboardEntriesByCriterion 1 challengeId
condition
onlyTheBestVariant
(\entry -> [entityKey $ tableEntrySubmission entry])
mEntMainTest <- runDB $ fetchMainTest challengeId
case mEntMainTest of
Just entMainTest -> do
let mainTestRef = getTestReference entMainTest
let naturalRange = getNaturalRange mainTestRef entries
let submissionIds = map leaderboardBestSubmissionId entries
forks <- runDB $ selectList [ForkSource <-. submissionIds, ForkTarget <-. submissionIds] []
return $ object [ "nodes" .= (Data.Maybe.catMaybes
$ map (auxSubmissionToNode mainTestRef naturalRange)
$ entries),
"edges" .= map forkToEdge forks ]
Nothing -> do
return $ object []
getNaturalRange :: TestReference -> [LeaderboardEntry] -> Double
getNaturalRange testRef entries = 2.0 * (interQuantile
$ Data.Maybe.catMaybes
$ map (\entry -> evaluationScore $ ((leaderboardEvaluationMap entry) M.! testRef)) entries)
auxSubmissionToNode :: TestReference -> Double -> LeaderboardEntry -> Maybe Value
auxSubmissionToNode testRef naturalRange entry = case evaluationScore $ ((leaderboardEvaluationMap entry) M.! testRef) of
Just score -> Just $ object [
"id" .= (nodeId $ leaderboardBestSubmissionId entry),
"x" .= (stampToX $ submissionStamp $ leaderboardBestSubmission entry),
"y" .= (- ((score / naturalRange) * 100.0)),
"size" .= (2 :: Int),
"label" .= descriptionToBeShown (leaderboardBestSubmission entry) (leaderboardBestVariant entry) (leaderboardParams entry) ]
Nothing -> Nothing
forkToEdge :: Entity Fork -> Value
forkToEdge (Entity forkId fork) = object [
"source" .= nodeId (forkSource fork),
"target" .= nodeId (forkTarget fork),
"id" .= edgeId forkId,
"type" .= ["arrow" :: String]
]
nodeId :: Key Submission -> String
nodeId = ("n" ++) . show . fromSqlKey
edgeId :: Key Fork -> String
edgeId = ("e" ++) . show . fromSqlKey
stampToX :: UTCTime -> Integer
stampToX = toModifiedJulianDay . utctDay
-- Indicator graph
-- Reduce a list to item which are larger than the largest item encountered so far.
-- (Needed to plot a step graph.)
monotonicBy :: (a -> b) -> (b -> b -> Ordering) -> [a] -> [a]
monotonicBy _ _ [] = []
monotonicBy extractor comparator (theFirst:theRest) = (theFirst : (monotonicBy' theFirst theRest))
where monotonicBy' _ [] = []
monotonicBy' theBest (h:t) = if extractor h `comparator` extractor theBest == GT
then
(h:(monotonicBy' h t))
else
monotonicBy' theBest t
targetStatusToClass :: TargetStatus -> String
targetStatusToClass TargetFailed = "target-failed-line"
targetStatusToClass TargetPassed = "target-passed-line"
targetStatusToClass TargetOngoing = "target-ongoing-line"
getIndicatorGraphDataR :: IndicatorId -> Handler Value
getIndicatorGraphDataR indicatorId = do
indicator <- runDB $ get404 indicatorId
indicatorEntry <- indicatorToEntry (Entity indicatorId indicator)
let label = prettyIndicatorEntry indicatorEntry
let testId = indicatorTest indicator
test <- runDB $ get404 testId
let mPrecision = testPrecision test
(entries, _) <- runDB $ getChallengeSubmissionInfos 1 (const True) (const True) id (testChallenge test)
theNow <- liftIO $ getCurrentTime -- needed to draw the "now" vertical line
let targetStatuses = map (getTargetStatus theNow entries indicatorEntry) (indicatorEntryTargets indicatorEntry)
-- first we apply the "filter condition"
let filteredEntries =
filterEntries (indicatorFilterCondition indicator)
$ sortBy (\a b -> (tableEntryStamp a) `compare` (tableEntryStamp b)) entries
-- ... all the entires that passed the "filter condition" are split according
-- to whether the main "target condition" is fulfilled or not,
-- "other..." will mean items for which "target condition" is not fulfilled
-- (but the "filter condition" was), they are also going to be used to draw
-- an auxilliary graph
let (targetEntries, otherEntries) =
partitionEntries (indicatorTargetCondition indicator) filteredEntries
let (scores', timePoints') = addNow theNow $ entriesToPoints (Entity testId test) targetEntries
let (otherScores, otherTimePoints) = addNow theNow $ entriesToPoints (Entity testId test) otherEntries
let otherLabel = label <> " (other filtered)"
-- grid lines for targets would not be taken into account when determining y range,
-- that's why we need to enforce y range manually if needed
-- (x range are not modified this way)
let targetValues = map (targetValue . entityVal) $ indicatorEntryTargets indicatorEntry
let maxRange = getBound compare scores' targetValues
let minRange = getBound (flip compare) scores' targetValues
-- we need to make sure the deadline line is visible
let targetsInTheFuture =
filter (\target -> targetDeadline target > theNow)
$ map entityVal $ indicatorEntryTargets indicatorEntry
let scores = scores' ++ (map (const (last $ impureNonNull scores')) targetsInTheFuture)
let timePoints = timePoints' ++ (map (formatTimestamp . targetDeadline) targetsInTheFuture)
-- we return a JSON object required by the C3 library
return $ object [
"bindto" .= ("#indicator-chart-" ++ (show $ unSqlBackendKey $ unIndicatorKey indicatorId)),
"data" .= object [
"xs" .= object ([
label .= ("xt" :: String)
] ++ (listIf (not $ null otherScores) [otherLabel .= ("xo" :: String)])),
"columns" .= ([
("xt" : timePoints),
(label : (map (formatScore mPrecision) scores))]
++ (listIf (not $ null otherScores) [
("xo" : otherTimePoints),
(otherLabel : (map (formatScore mPrecision) otherScores))])),
"types" .= object [
label .= ("area-step" :: String),
otherLabel .= ("step" :: String)
]
],
"axis" .= object [
"x" .= object [
"type" .= ("timeseries" :: String),
"tick" .= object [
"format" .= ("%Y-%m-%d" :: String)
]
],
"y" .= object ((getBoundAttr "max" maxRange) ++ (getBoundAttr "min" minRange))
],
"line" .= object [
"step" .= object [
"type" .= ("step-after" :: String)
]
],
"grid" .= targetsToLines theNow indicatorEntry targetStatuses
]
formatTimestamp :: UTCTime -> Text
formatTimestamp = T.pack . formatTime defaultTimeLocale "%Y-%m-%d"
-- add fake entry for the current time
addNow :: UTCTime -> ([Double], [Text]) -> ([Double], [Text])
addNow _ ([], []) = ([], [])
addNow theNow (scores, timepoints) = (scores ++ [last $ impureNonNull scores], timepoints ++ [formatTimestamp theNow])
entriesToPoints :: Entity Test -> [TableEntry] -> ([Double], [Text])
entriesToPoints testEnt@(Entity _ test) entries = (scores, timePoints)
where timePoints = map (formatTimestamp . tableEntryStamp) relevantEntries
scores = map (\entry -> fromJust $ evaluationScore $ (tableEntryMapping entry) M.! testRef) relevantEntries
relevantEntries =
monotonicBy (\entry -> fromJust $ evaluationScore $ (tableEntryMapping entry) M.! testRef) comparator
$ filter (\entry -> testRef `M.member` (tableEntryMapping entry)
&& isJust (evaluationScore ((tableEntryMapping entry) M.! testRef))) entries
comparator = compareFun $ getMetricOrdering $ evaluationSchemeMetric $ testMetric test
testRef = getTestReference testEnt
targetsToLines :: UTCTime -> IndicatorEntry -> [TargetStatus] -> Value
targetsToLines theNow indicator statuses = object [
"y" .= object [
"lines" .= map (\(target, status) -> object [
"value" .= (targetValue $ entityVal target),
"text" .= formatTarget mPrecision target,
"class" .= targetStatusToClass status
]) (zip targets statuses)
],
"x" .= object [
"lines" .= ((map (\(target, status) -> object [
"value" .= (formatTimestamp $ targetDeadline $ entityVal target),
"text" .= formatTarget mPrecision target,
"class" .= targetStatusToClass status
]) $ zip targets statuses)
++ [object [
"value" .= formatTimestamp theNow,
"text" .= ("now" :: String)
]])
]
]
where targets = indicatorEntryTargets indicator
mPrecision = testPrecision $ entityVal $ indicatorEntryTest indicator
getBound :: (a -> a -> Ordering) -> [a] -> [a] -> Maybe a
getBound _ [] _ = Nothing
getBound _ _ [] = Nothing
getBound comparator mainList extraList =
let mainMax = maximumBy comparator (impureNonNull mainList)
extraMax = maximumBy comparator (impureNonNull extraList)
in case extraMax `comparator` mainMax of
GT -> Just extraMax
_ -> Nothing
getBoundAttr :: KeyValue p => Text -> Maybe Double -> [p]
getBoundAttr _ Nothing = []
getBoundAttr label (Just s) = [
label .= s
]
listIf :: Bool -> [a] -> [a]
listIf True l = l
listIf False _ = []
partitionEntries :: Maybe Text -> [TableEntry] -> ([TableEntry], [TableEntry])
partitionEntries Nothing entries = (entries, [])
partitionEntries (Just condition) entries = partition (\entry -> checkCondition conditionParsed (toVariantEntry entry)) entries
where conditionParsed = parseCondition condition
toVariantEntry :: TableEntry -> VariantEntry
toVariantEntry entry = VariantEntry {
variantEntryTags = map (entityVal . fst) $ tableEntryTagsInfo entry,
variantEntryParams = map entityVal $ tableEntryParams entry
}
-- auxiliary functions taken from Math.Statistics
interQuantile :: (Fractional b, Ord b) => [b] -> b
interQuantile [] = 10.0
interQuantile xs = (q' - q)
where q = quantile 0.25 xs
q' = quantile 0.75 xs
quantile :: (Fractional b, Ord b) => Double -> [b] -> b
quantile q = quantileAsc q . sort
quantileAsc :: (Fractional b, Ord b) => Double -> [b] -> b
quantileAsc _ [] = error "x"
quantileAsc q xs
| q < 0 || q > 1 = error "quantile out of range"
| otherwise = xs !! (quantIndex (length xs) q)
where quantIndex :: Int -> Double -> Int
quantIndex len q' = case round $ q' * (fromIntegral len - 1) of
idx | idx < 0 -> error "Quantile index too small"
| idx >= len -> error "Quantile index too large"
| otherwise -> idx