forked from pms/uczenie-maszynowe
Uaktualnienie lab. 5
This commit is contained in:
parent
2af4ea2178
commit
a367ed7abf
@ -44,23 +44,16 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 15,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"[[332187.32537534]\n",
|
"[279661.8663101 279261.14658016 522543.09697553 243798.45172733\n",
|
||||||
" [369587.77676738]\n",
|
" 408919.21577439 272940.5507781 367515.38801642 592972.56867895\n",
|
||||||
" [488428.70420785]\n",
|
" 418509.89826131 943578.7139463 ]\n"
|
||||||
" [300013.00301966]\n",
|
|
||||||
" [412118.79730411]\n",
|
|
||||||
" [283333.7605634 ]\n",
|
|
||||||
" [275209.84706017]\n",
|
|
||||||
" [361970.50784352]\n",
|
|
||||||
" [272402.36116539]\n",
|
|
||||||
" [328635.55642844]]\n"
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@ -84,7 +77,7 @@
|
|||||||
"def preprocess(data):\n",
|
"def preprocess(data):\n",
|
||||||
" \"\"\"Wstępne przetworzenie danych\"\"\"\n",
|
" \"\"\"Wstępne przetworzenie danych\"\"\"\n",
|
||||||
" data = data.replace({\"parter\": 0, \"poddasze\": 0}, regex=True)\n",
|
" data = data.replace({\"parter\": 0, \"poddasze\": 0}, regex=True)\n",
|
||||||
" data = data.applymap(np.nan_to_num) # Zamienia \"NaN\" na liczby\n",
|
" data = data.map(np.nan_to_num) # Zamienia \"NaN\" na liczby\n",
|
||||||
" return data\n",
|
" return data\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -101,7 +94,7 @@
|
|||||||
"data_train, data_test = train_test_split(data, test_size=0.2)\n",
|
"data_train, data_test = train_test_split(data, test_size=0.2)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Uczenie modelu\n",
|
"# Uczenie modelu\n",
|
||||||
"y_train = pd.DataFrame(data_train[\"cena\"])\n",
|
"y_train = pd.Series(data_train[\"cena\"])\n",
|
||||||
"x_train = pd.DataFrame(data_train[FEATURES])\n",
|
"x_train = pd.DataFrame(data_train[FEATURES])\n",
|
||||||
"model = LinearRegression() # definicja modelu\n",
|
"model = LinearRegression() # definicja modelu\n",
|
||||||
"model.fit(x_train, y_train) # dopasowanie modelu\n",
|
"model.fit(x_train, y_train) # dopasowanie modelu\n",
|
||||||
@ -154,14 +147,14 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 16,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Błąd średniokwadratowy wynosi 1179760250402.185\n"
|
"Błąd średniokwadratowy wynosi 137394744518.31197\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@ -182,14 +175,14 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 17,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"-10.712011261173265\n"
|
"0.2160821272059249\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@ -213,7 +206,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": 18,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -225,14 +218,6 @@
|
|||||||
"F-score: 1.0\n",
|
"F-score: 1.0\n",
|
||||||
"Model score: 1.0\n"
|
"Model score: 1.0\n"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"/home/pawel/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1111: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
@ -254,7 +239,7 @@
|
|||||||
"data_train, data_test = train_test_split(data_iris, test_size=0.2)\n",
|
"data_train, data_test = train_test_split(data_iris, test_size=0.2)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Uczenie modelu\n",
|
"# Uczenie modelu\n",
|
||||||
"y_train = pd.DataFrame(data_train[\"Iris setosa?\"])\n",
|
"y_train = pd.Series(data_train[\"Iris setosa?\"])\n",
|
||||||
"x_train = pd.DataFrame(data_train[FEATURES])\n",
|
"x_train = pd.DataFrame(data_train[FEATURES])\n",
|
||||||
"model = LogisticRegression() # definicja modelu\n",
|
"model = LogisticRegression() # definicja modelu\n",
|
||||||
"model.fit(x_train, y_train) # dopasowanie modelu\n",
|
"model.fit(x_train, y_train) # dopasowanie modelu\n",
|
||||||
|
Loading…
Reference in New Issue
Block a user